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ВВЕДЕНИЕ

Идея о возможности бозе-эйнштейновской
конденсации в ансамбле циклотронных магни-
тоэкситонов, у которых электрон и дырка нахо-
дятся на разных уровнях Ландау в зоне проводи-
мости, была высказана относительно недавно [1].
Наиболее перспективными с этой точки зре-
ния являются триплетные циклотронные (спин-
флип) магнитоэкситоны (ТЦМЭ) в квантово-
холловском диэлектрике при факторе заполне-
ния электронов ν = 2, сформированном в кван-
товой яме (КЯ) на основе полупроводниковой
гетеросистемы GaAs/AlGaAs [2,3]. ТЦМЭ обра-
зованы неравновесными электронной ваканси-
ей (ферми-дыркой) на полностью заполненном
нулевом электронном уровне Ландау и возбуж-
денным электроном с перевернутым спином на
незаполненном первом уровне Ландау. ТЦМЭ –
нижайшие по энергии возбуждения в квантово-
холловском диэлектрике, которые являются дол-
гоживущими композитными бозонами со спи-
ном S = 1 [3, 4]. Время жизни ТЦМЭ достигает
миллисекунды [5].

ТЦМЭ являются «темными» квазичастицами,
которые не взаимодействуют с электромагнит-
ным полем в дипольном приближении. Поэто-

му в экспериментах по регистрации ТЦМЭ ис-
пользуется взаимодействие света не с самим маг-
нитоэкситоном, а только с одной из его состав-
ляющих – ферми-дыркой. Для этого исполь-
зуется резонансное отражение света с энерги-
ей фотона, соответствующей оптическому пе-
реходу «0-0» между состояниями нулевых уров-
ней Ландау тяжелой дырки в валентной зоне и
электрона в зоне проводимости КЯ. В квантово-
холловском диэлектрике в равновесном состо-
янии такое резонансное отражение отсутству-
ет: оптические переходы «0-0» невозможны, т.к.
нулевой уровень Ландау полностью занят элек-
тронами. Сигнал отражения возникает только
при возбуждении двумерной электронной си-
стемы (2DЭС) долгоживущими неравновесными
ТЦМЭ, т.е. после появления на нулевом уровне
Ландау неравновесных дырок – составных частей
спин-флип экситонов.

Сами неравновесные ТЦМЭ формируются фо-
товозбуждением электронов со дна валентной зо-
ны на потолок зоны проводимости КЯ, содер-
жащей 2DЭС. Фотовозбужденные электроны ре-
лаксируют на нижайшее состояние на первом
уровне Ландау зоны проводимости, а фотовоз-
бужденные дырки релаксируют на нулевой уро-
вень Ландау тяжелых дырок валентной зоны.
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В процессе релаксации валентная дырка может
много раз изменить свой спин вследствие силь-
ного спин-орбитального взаимодействия в ва-
лентной зоне КЯ. После этого фотовозбужден-
ная дырка может рекомбинировать с равновес-
ным электроном зоны проводимости с образова-
нием вакансии (ферми-дырки) на нулевом элек-
тронном уровне Ландау. Если в процессе релак-
сации в валентной зоне фотовозбужденная дыр-
ка изменила спин, то после ее превращения в
ферми-дырку вся электронная система изменяет
спин на единицу. Спин фотовозбужденного элек-
трона, напротив, в процессе релаксации не из-
меняется из-за слабого спин-орбитального вза-
имодействия в зоне проводимости КЯ. Связы-
ваясь, ферми-дырка и возбужденный электрон
образуют ТЦМЭ. Как упомянуто выше, наличие
ТЦМЭ приводит к возникновению резонансно-
го отражения света с энергией перехода элек-
тронов с нулевого уровня Ландау тяжелых ды-
рок на ферми-дырки, связанные в ТЦМЭ (пере-
ход «0-0»). Оптический процесс, связанный с по-
глощением фотона электроном валентной зоны и
его переходом в зону проводимости, на место фо-
товозбужденной ферми-дырки, с последующим
испусканием фотона с той же энергией и тем же
продольным импульсом вдоль плоскости кван-
товой ямы, назван фотоиндуцированным резо-
нансным отражением (ФРО) [6].

При температурах T ≲ 1K в плотном ансам-
бле ТЦМЭ формируется новое сильнокоррели-
рованное состояние электронной материи, на-
званное в работе [5] магнетофермионным кон-
денсатом. Название обусловлено тем, что кон-
денсация происходит именно в системе 2D элек-
тронов (фермионов), полностью заполняющих
нулевой уровень Ландау, часть из которых пере-
несена (возбуждена) на незаполненный первый
уровень Ландау. Из равновесных электронов и их
вакансий на нулевом уровне Ландау формируют-
ся ферми-дырки, взаимодействующие с возбуж-
денными электронами на первом уровне Ландау.
В результате в фермиевской системе появляется
газ композитных бозонов (ТЦМЭ), который при
достижении критической концентрации перехо-
дит в конденсированное состояние. По этой при-
чине новое конденсированное состояние может
быть названо как магнетофермионным конден-
сатом (если рассматривать возбуждения в элек-
тронном представлении), так и магнитоэкситон-
ным конденсатом (если рассматривать возбуж-
дения в электрон – ферми-дырочном представ-
лении). Магнетофермионный (в дальнейшем –
магнитоэкситонный) конденсат является экспе-
риментальным примером конденсации возбуж-
дений в пространстве обобщенных импульсов
q⃗ – величин, зависящих как от пространственных
координат, так и от их градиентов [7]. Макроско-
пическая когерентность конденсата подтвержда-
ется проведенными недавно интерферометриче-

скими исследованиями [8–10], которые показа-
ли, что длина пространственной когерентности в
конденсате составляет не менее 10 мкм.

Отличительной особенностью этого конден-
сата является его способность растекаться из
области фотовозбуждения в объем квантово-
холловского изолятора на макроскопические
расстояния. В работе [5] было продемонстриро-
вано распространение конденсата фактически
на весь исследовавшийся образец размером
≈ 3 × 3 мм. Эксперименты по визуализации рас-
текания [11] показали, что механизм переноса –
недиффузионный. Во-первых, транспортная
длина ТЦМЭ в конденсированном состоянии
при фиксированной температуре, по крайней
мере, на три порядка величины больше, чем дли-
на диффузии ТЦМЭ в газовой фазе. Во-вторых,
пространственный профиль плотности конден-
сата описывается ступенчатой, а не гауссовой
функцией, за исключением областей холлов-
ского диэлектрика, где наблюдаются дефекты
ограничивающего потенциала КЯ. В однород-
ных (бездефектных) областях плотность ТЦМЭ
(высота ступени) одинакова во всей области
растекания конденсата [11]. Это означает, что
при фиксированной температуре эксперимента
по визуализации растекания конденсат яв-
ляется несжимаемым состоянием. Однако до
настоящей работы было неизвестно, зависит ли
плотность ТЦМЭ в конденсате от температуры.

Варьирование температуры и мощности фо-
товозбуждения (оптической накачки) позволило
построить часть экспериментальной диаграммы
перехода «газ – конденсат» в координатах «тем-
пература – плотность мощности накачки» в уз-
ком диапазоне температур 0.53 ⩽ T ⩽ 0.85K [5].
При изменении температуры в указанных преде-
лах мощность накачки, необходимая для дости-
жения фазовой границы, изменялась на порядок
величины, что сложно объяснить в рамках суще-
ствующих теоретических представлений. Напри-
мер, в теоретической работе [12] было подчерк-
нуто, что фазовая граница конденсата ТЦМЭ
определяется плотностью ТЦМЭ и флуктуация-
ми случайного потенциала КЯ, а не температурой
2DЭС.

Необходимо отметить, что фазовая граница,
определенная экспериментально в работе [5],
связывала с температурой перехода «газ – кон-
денсат» не плотность ТЦМЭ, а именно плотность
мощности фотовозбуждения (т.е. концентрацию
ТЦМЭ, возбуждаемых в пятне оптической на-
качки). При этом в той же работе было показано,
что с температурой изменяется не только плот-
ность мощности накачки Ppump, необходимая для
достижения фазовой границы, но и время жиз-
ни ТЦМЭ в пятне возбуждения. Таким образом,
фазовая диаграмма описывала эксперименталь-
ный метод достижения фазовой границы пере-
хода «газ – конденсат», но не давала реального
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представления о физической природе самого
конденсата. В настоящей работе представлены
результаты исследования условий формирования
конденсированного состояния в области более
низких температур и построена фазовая диаграм-
ма перехода «газ – конденсат» в диапазоне 0.04 ⩽
⩽ T ⩽ 0.85 K в координатах «T − Ppump» и в диа-
пазоне 0.04 ⩽ T ⩽ 0.6 K – в координатах «T−Nex»,
где Nex – квазистационарная плотность ТЦМЭ в
пятне накачки. На основании проведенных ис-
следований сделан вывод о том, что конден-
сация ТЦМЭ происходит при постоянном зна-
чении Nex, которое не зависит от температуры.
Комбинируя данные по температурной зависи-
мости фазовой границы и «растеканию» конден-
сата в холловском диэлектрике, можно предпо-
ложить, что магнитоэкситонный конденсат явля-
ется несжимаемым состоянием.

МЕТОДЫ ЭКСПЕРИМЕНТА

В экспериментах исследована высококаче-
ственная гетероструктура, содержащая оди-
ночную, симметрично легированную, КЯ
GaAs/AlGaAs шириной 31 нм с концентрацией
электронов в 2D канале ne = 2 · 1011 см−2 и тем-
новой подвижностью µe = 1.5 · 107 см2 · B−1 · c−1.
Образец размером ≈ 3 × 3 мм помещался в
криостат растворения со сверхпроводящим
соленоидом. Эксперименты проводились в диа-
пазоне температур от 40 до 650 мK в магнитном
поле B = 4.35 Тл, перпендикулярном плоскости
КЯ.

Для спектральных измерений использова-
лись два многомодовых кварцевых световода
�200 мкм с числовой апертурой 0.22. Один
световод использовался для подвода к образцу
излучений лазера накачки и зондирующего
лазера, а второй – для сбора излучения от об-
разца и последующей его передачи либо на
входную щель дифракционного спектромет-
ра с охлаждаемой ПЗС-камерой, либо через
узкополосный (≈1.1 нм) интерференционный
фильтр, настроенный на длину волны ФРО, –
на кремниевый лавинный фотодиод в режиме
счета фотонов, подключенный к фотонному
счетчику со стробированием во времени. Для
регистрации резонансного отражения световоды
устанавливались симметрично, под углом ≈10∘
к нормали образца, так чтобы ось отраженного
лазерного пучка совпадала с осью принимающе-
го световода. Для подавления вклада от света,
отраженного от поверхности образца, исполь-
зовались скрещенные линейные поляризаторы,
установленные между концами световодов и об-
разцом. Диаметр пятна накачки и зондирования
на образце составлял ≈0.8 мм.

Источником оптической накачки для форми-
рования ансамбля неравновесных ТЦМЭ слу-
жил одномодовый лазерный диод (длина волны

λ ≈ 785 нм), а источником зондирующего излу-
чения для контроля ФРО – непрерывный пере-
страиваемый титан-сапфировый лазер с шири-
ной линии 5 МГц. Во избежание эффектов пе-
регрева мощность диодной накачки на образ-
це не превышала 10 мкВт, а плотность мощно-
сти ≈2 мВт · см–2. Мощность вводимого в тот же
световод излучения зондирующего лазера была
на два порядка меньше. Спектр резонансного
отражения измерялся с помощью сканирования
длины волны зондирующего лазера и регистра-
ции интенсивности лазерной линии в отражен-
ном свете ПЗС-камерой на выходе спектромет-
ра. Фотолюминесценция (ФЛ) ансамбля ТЦМЭ
возбуждалась тем же лазерным диодом, кото-
рый использовался для накачки ФРО, а спектры
ФЛ регистрировались в описанной геометрии от-
ражения при выключенном зондирующем лазе-
ре. Модулирование тока лазерного диода генера-
тором прямоугольных импульсов (длительность
фронта/спада <10 нс) позволяло измерять с по-
мощью счетчика фотонов время τd — длитель-
ность спада сигнала ФРО из пятна фотовозбуж-
дения после окончания импульса накачки.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И
ИХ ОБСУЖДЕНИЕ

Заполнение холловского диэлектрика
ТЦМЭ-возбуждениями и их распределение
в q-пространстве контролировалось по спектрам
ФЛ. Характерный спектр ФЛ при плотности
мощности фотовозбуждения, соответствующей
области перехода ансамбля ТЦМЭ в конденси-
рованное состояние, показан на рис. 1. Спектр
состоит только из линий переходов трехчастич-
ных комплексов, с образованием в конечном
состоянии процесса рекомбинации плазмарона
(Pln) или триона (T) [13, 14]. Одночастичных
электрон-дырочных переходов (S) не наблюдает-
ся – это означает, что ТЦМЭ плотно заполняют
все пятно накачки, так что любая фотовозбуж-
денная дырка неизбежно оказывается вблизи
спин-флип экситона. Энергетический спектр
оптических переходов с рождением плазмарона,
спин-синглетного по дыркам трехчастично-
го комплекса, участвующего в коллективных
плазменных колебаниях электронной системы,
отражает плотность заполненных состояний
ТЦМЭ в q⃗-пространстве [14–16]. Бо́льшая часть
ТЦМЭ (максимум в спектре плазмарона) в
этом случае имеет импульс, соответствующий
минимуму в дисперсионной зависимости ТЦМЭ
(q ≈ l−1

B , где lB – магнитная длина) [17]. Также
имеется максимум вблизи q ≈ 0, так как фото-
возбужденные ТЦМЭ имеют нулевой импульс,
а процессы релаксации внутри дисперсион-
ной зависимости ТЦМЭ занимают длительное
время [14, 16, 18]. В свою очередь, энергия
оптического перехода с рождением триона,
спин-триплетного по дыркам трехчастичного
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Рис. 1. Спектры фотолюминесценции (ФЛ) и
фотоиндуцированного резонансного отражения
(ФРО) магнитоэкситонного конденсата. Линия Т в
σ+-поляризации соответствует ФЛ трехчастичных
комплексов – трионов, состоящих из триплетного
циклотронного манитоэкситона (ТЦМЭ или TCME)
и фотовозбужденной дырки с тем же спином, что и
спин ферми-дырки в ТЦМЭ (дырочный триплет).
Полоса Pln в σ−-поляризации соответствует ФЛ
трехчастичных комплексов – плазмаронов, состо-
ящих из ТЦМЭ и фотовозбужденной дырки со
спином, противоположным спину ферми-дырки в
ТЦМЭ (дырочный синглет). Функция распределения
плазмаронов по энергии связана с функцией распре-
деления ТЦМЭ по импульсам q [13]. Вверху – схемы
излучательной рекомбинации: одночастичной (S),
плазмарона (Pln) и триона (T).

комплекса, почти совпадает с энергией ФРО
(отличие состоит в разнице энергий кулоновско-
го взаимодействия ТЦМЭ и валентной дырки в
начальном и в конечном состоянии из-за слегка
различных волновых функций носителей заряда
в направлении роста КЯ в валентной зоне и зоне
проводимости, рис. 1).

Диаграмма перехода «газ – конденсат ТЦМЭ»
в координатах «T − Ppump» строилась с помощью
измерений зависимости амплитуды сигнала ФРО
I PRR от плотности мощности фотовозбуждения
Ppump при различных фиксированных темпера-
турах гелиевой бани и постоянной интенсивно-
сти зондирующего резонансного лазерного излу-
чения. При малых накачках I PRR(Ppump) растет

линейно вследствие линейного увеличения числа
ТЦМЭ. В области перехода «газ – конденсат» мо-
жет наблюдаться эффект нелинейного усиления
(см. рис. 2а), который ослабевает с понижением
температуры и при T ≲ 300 мК уже не наблю-
дается (см. рис. 2б). С другой стороны, во всем
исследованном температурном диапазоне на за-
висимости I PRR(Ppump) наблюдается явно выра-
женное уменьшение темпа роста сигнала ФРО
с накачкой (рис. 2). Такое поведение естествен-
но связать с переходом «газ – конденсат», в ре-
зультате которого начинается быстрое растека-
ние ТЦМЭ из пятна накачки, т.е. из области ре-
гистрации сигнала ФРО. При построении диа-
граммы перехода «газ – конденсат» в координа-
тах «T − Ppump» за точку перехода принималось
значение плотности мощности P0, соответствую-
щее излому на зависимости I PRR(Ppump), если ап-
проксимировать ее двумя прямыми (см. рис. 2).
Полученная в результате диаграмма показана на
рис. 3а. Там же приведены экспериментальные
точки из работы [5].

При T ≲ 500 мК зависимость плотности мощ-
ности фотовозбуждения от температуры на гра-
нице перехода «газ – конденсат» P0(T ) близка к
линейной, однако при бо́льших температурах на-
блюдается сильный сверхлинейный рост. Более
того, уже при T ≳ 1 K границы перехода «газ –
конденсат» достичь не удается. Очевидно, с уве-
личением температуры «время жизни» ТЦМЭ в
пятне фотовозбуждения падает столь быстро, что
наращивание скорости генерации спин-флип эк-
ситонов за счет увеличения Ppump не компенси-
рует уменьшения квазиравновесной плотности
ТЦМЭ в пятне фотовозбуждения.

Фазовая диаграмма в координатах «T − Ppump»
дает представление об экспериментальных воз-
можностях получения магнитоэкситонного кон-
денсата, но не позволяет понять зависимость
от температуры критической плотности ТЦМЭ
Nex(T ), необходимой для конденсации. Область
фазовой диаграммы на рис. 3а, обозначенная
как «магнитоэкситонный конденсат», показыва-
ет лишь изменение плотности ТЦМЭ, возбуж-
даемых в пятне накачки. При этом увеличение
плотности мощности Ppump может и не влиять на
квазистационарную плотность ТЦМЭ в конден-
сате – Nex, так как вся «лишняя» плотность ква-
зиравновесных ТЦМЭ способна растекаться за
пределы пятна фотовозбуждения либо релакси-
ровать в основное состояние и не давать вкла-
да в сигнал ФРО. Физически корректная фазо-
вая диаграмма перехода «газ – конденсат» долж-
на строиться в координатах «T – Nex».

Квазистационарная плотность ТЦМЭ Nex в
пятне возбуждения при непрерывной оптиче-
ской накачке пропорциональна произведению
плотности мощности накачки Ppump и време-
ни τd вне зависимости от того, определяется
ли это время релаксацией спин-флип экситонов
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Рис. 3. Фазовая диаграмма перехода «газ – магнитоэкситонный конденсат». В координатах «T – Ppump» (а). Точ-
ки – эксперимент (черные кружки – настоящая работа, серый кружки – работа [5]). Черный пунктир приве-
ден для удобства. Синие квадраты и пунктир – результат измерений температурной зависимости времени спада
сигнала ФРО. В координатах «T – Nex» (б). Левая шкала – значения экспериментальных данных, описывающих
квазистационарную плотность ТЦМЭ в пятне возбуждения. Правая шкала – значения Nex, соответствующие
теоретическим оценкам [5, 11].

в основное состояние или распространением за
пределы пятна накачки. Построенная в коорди-
натах «T − Ppump · τd» диаграмма перехода «газ –
конденсат» отражает реальную зависимость фа-
зовой границы от квазистационарной плотности
ТЦМЭ – Nex. Было обнаружено, что с точно-
стью до фактора 2 положение фазовой грани-
цы на диаграмме «T − Nex» не зависит от тем-
пературы (рис. 3б). Таким образом, можно сде-
лать вывод о том, что магнитоэкситонный кон-
денсат ТЦМЭ представляет собой несжимаемое в
реальном пространстве состояние, причем плот-
ность конденсата с имеющейся эксперименталь-
ной точностью не зависит от температуры.

К сожалению, не существует точного мето-
да определения абсолютной величины плотности
ТЦМЭ на границе перехода «газ – конденсат»,
аналогичного магнитотранспортным измерени-

ям холловской проводимости [19]. Поэтому на
данный момент невозможно указать абсолютную
величину Nex, необходимую для их конденсации.
Теоретическая оценка этой плотности, сделан-
ная в работе [12], составляет 5–10% от плотности
квантов магнитного потока NΦ. По независимым
исследованиям ФЛ двумерного электронного га-
за можно сделать вывод о том, что при плотно-
сти ферми-дырок более 0.15NΦ ТЦМЭ становят-
ся нестабильными [5]. Поэтому разумной пред-
ставляется оценка плотности ТЦМЭ N o, необхо-
димой для формирования конденсата, в диапа-
зоне No = (0.05–0.15) NΦ. Поиск метода повыше-
ния точности этой оценки – одна из будущих за-
дач физики магнитоэкситонного конденсата. Са-
ма фазовая диаграмма в координатах «T – Nex»
представляет собой две обширные области: об-
ласть магнитоэкситонного газа, Nex < No, и
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область газа некоррелированных возбужденных
электронов, Nex > No, в котором ТЦМЭ неста-
бильны. Эти области разделены линией конден-
сата, Nex = No, возможно, уширенной за счет
флуктуаций случайного потенциала КЯ [11].

Несжимаемость магнитоэкситонного конден-
сата позволяет построить физическую картину
его растекания в реальном пространстве, со-
гласующуюся с экспериментом [11]. Критиче-
ская плотность ТЦМЭ для формирования кон-
денсата N o определяет среднее расстояние меж-
ду спин-флип экситонами в реальном простран-
стве, уменьшить которое невозможно. Добавле-
ние фотовозбужденного ТЦМЭ в область, уже за-
нятую конденсатом, приводит к тому, что кон-
денсат растекается в пространстве на площадь,
необходимую для аккумуляции ТЦМЭ, на гра-
нице раздела «конденсат – холловский диэлек-
трик». В настоящее время механизм передачи ин-
формации от точки фотовозбуждения ТЦМЭ до
границы «конденсат – холловский диэлектрик»
неизвестен. Одна возможность состоит в том, что
фотовозбужденный ТЦМЭ с импульсом, отлич-
ным от импульса квазичастиц конденсата, дви-
жется к границе раздела, слабо взаимодействуя с
остальными частицами конденсата. Другой вари-
ант предполагает, что фотовозбужденный ТЦМЭ
и конденсат образуют единую коррелированную
систему, возбуждение в которой распространяет-
ся коллективно к границе раздела. Предполага-
ется, что скорость распространения надконден-
сатного фотовозбужденного ТЦМЭ соответству-
ет скорости спинового транспорта, измеренной в
работе [15].

ЗАКЛЮЧЕНИЕ
Построена фазовая граница перехода «газ –

конденсат» в возбужденной двумерной электрон-
ной системе, помещенной в квантующее маг-
нитное поле. Конденсированное состояние –
магнитоэкситонный конденсат – является при-
мером конденсации нейтральных возбуждений
не в реальном и не в обратном пространстве.
Обобщенные импульсы, являющиеся интегра-
лами движения для нейтральных электронных
возбуждений в магнитном поле, зависят как
от пространственных координат, так и от их
градиентов. По этой причине свойства нового
конденсированного состояния могут отличать-
ся от свойств хорошо известных квазиравновес-
ных бозе-эйнштейновских конденсатов, таких,
как атомные [20, 21] или поляритонные [22] кон-
денсаты. Интересно, что создание плотных ан-
самблей нейтральных возбуждений в двумерной
электронной системе, помещенной в магнитное
поле, не гарантирует формирования конденси-
рованного состояния со свойствами магнитоэк-
ситонного конденсата. Например, ансамбль ней-
тральных возбуждений с единичным спином лег-
ко достигает предела растворимости в лафлинов-

ской электронной жидкости на факторе заполне-
ния ν = 1/3 [23]. Однако, при этом не наблюдает-
ся ни макроскопической когерентности в ансам-
бле возбуждений, ни распространения ансамбля
в реальном пространстве [10, 24].

Авторы благодарны В. Д. Кулаковскому за по-
лезные обсуждения полученных результатов.
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Phase diagram of magnetoexciton condensate
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The phase boundary of the “gas – magnetoexciton condensate” transition of an excited two-dimensional
electron system placed in a quantizing magnetic field is constructed in the “temperature – excitation
density” coordinates. Based on experimental data, it can be concluded that the condensate is a collective,
incompressible in real space, excited state of a Hall dielectric.
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