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ВВЕДЕНИЕ
Интерес к квантовому эффекту Холла (КЭХ)

не угасает с 1980 года. Эффект проявляется в
дискретизации значений поперечной проводи-
мости, что делает его ярким примером кванто-
вых явлений на макроскопическом уровне. Осо-
бый интерес представляют квазичастичные воз-
буждения, возникающие как в режиме дробного,
так и целочисленного квантового эффекта Хол-
ла. Интерес к дробным возбуждениям основыва-
ются на достижениях в области топологических
квантовых вычислений [1, 2] и вовлечении ани-
онов (квазичастиц, не подчиняющихся ни бо-
зонной, ни фермионной статистике, а в неко-
торых случаях, как и не-абелевых частиц при
определенных степенях заполнения) для описа-
ния физических свойств двумерных электронных
систем (ДЭС) [3]. С другой стороны, возбужде-
ния целочисленного КЭХ такие как триплетные
циклотронные магнитоэкситоны (ТЦМЭ), обра-
зующиеся в контексте квантово-холловского ди-
электрика при электронном факторе заполне-
ния ν = 2, также привлекли к себе пристальное
внимание [4]. Эти возбуждения характеризуют-
ся длительным временем жизни вплоть до мили-
секунд, что позволяет создавать новую фазовую
структуру — магнетофермионный конденсат [4].

Иным примером необычных возбуждения на
ν = 2 служат плазмароны. Плазмарон представ-
ляет собой частный пример более общего класса
заряженных возбуждений в металлах — трионов.
Возможность существования связанных трионов

не вызывает сомнений, в то время как суще-
ствование свободных трехчастичные комплексов
встречает много критики. Тем не менее широко
обсуждается вклад трионов в рекомбинационные
спектры двумерных электронных систем [5, 6].
Ранее в работе [7] было продемонстрировано, что
плазмароны проявляются в спектрах рекомби-
нации холловского изолятора на ν = 2 как от-
дельный пик, отщепленный по энергии от ос-
новных линий рекомбинации. На факторе запол-
нения ν = 2 возможно существование несколько
различных двучастичных и трехчастичных ком-
плексов. Самое простое возбуждение это маг-
нитоплазмон который представляет собой свя-
занное состояние электрона на первом свобод-
ном уровне Ландау и ферми-дырки на заполнен-
ном нулевом. Магнитоплазмон можно возбудить
и зарегистрировать в основном состоянии систе-
мы, например методом рамановской спектроско-
пии. Для трехчастичных комплексов необходи-
мо неравновесное возбуждение системы. Обыч-
но, в процессе интенсивного фотовозбуждения
вблизи запрещенной зоны в системе появляется
какое-то количество ферми-дырок. Так получа-
ется потому, что дырки из валентной зоны очень
быстро релаксируют и вырывают электроны с
нижайшего уровня Ландау. Эти ферми-дырки
могут образовать связанное состояние с магни-
топлазмоном. При этом если спины двух ферми-
дырок (свободной и от магнитоплазмона) об-
разуют спиновый триплет, то такой трехчастич-
ный комплекс называют трионом. Если спины
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двух ферми-дырок образуют спин-синглет, трех-
частичный комплекс называют плазмароном. В
последствии в работе [8] помимо прочего было
указано, что похожие плазмароны существуют и
при факторе заполнения ν = 3/2 и в окрестно-
сти. Однако, тогда подробно не исследовались
свойства этих возбуждений. В отличие от тех,
которые существуют на парамагнитном холлов-
ском изоляторе в дробном состоянии, наблю-
дается несколько пиков, что по всей видимо-
сти указывает на то, что магнитоплазмон имеет
несколько точек высокой плотности состояний.

В данной работе мы внимательно изучили
спектр люминесценции в диапазоне факторов
заполнения от 1 до 2 при очень низких тем-
пературах около 40 мК. Было выявлено, что
плазмаронные пики существуют в диапазоне от
1.2 < ν < 1.6. Также мы выявили, что на дро-
би ν = 4/3 плазмонный спектр перестраивается.
Также, мы провели эксперимент по измерению
зависимости излучения плазмонов по сравнению
с обычной рекомбинацией от мощности накач-
ки. Было выявлено, что при высокой плотно-
сти накачки появляется второй комплекс пиков
в точности напоминающий плазмаронный. Дан-
ный эффект пока был назван двойными плазма-
ронами.

МЕТОДЫ ЭКСПЕРИМЕНТА
Образец был помещен в криостат растворе-

ния. Доступный диапазон температур составлял
от 40 до 800 мК. Регулировка температуры осу-
ществлялась подачей тока на резистивный нагре-
ватель в смесительной камере. Криостат оснащен
сверхпроводящим соленоидом развивающий по-
ле вплоть до 14 Тл. Для улучшения отвода тепла от
образца он был приклеен алюминиевой пастой к
массивному медному столику.

Эксперимент ставился по двухсветоводной ме-
тодике. Один файбер использовался для накач-
ки лазером, а второй для сбора фотолюминесцен-
ции. Файберы располагались на расстоянии при-
мерно 2 мм от образца. Апертура выходного пуч-
ка NA = 0.22 что гарантирует величину светово-
го пятна возбуждения <1 мм. Выходящий сигнал
попадал на спектрометр с разрешением 1.5 А/мм.
Полученный сигнал накапливался и усреднялся
по примерно 10 сек с 5–10 усреднениями.

Для оптической накачки двумерной электрон-
ной системы использовали перестраиваемый
лазер Toptica с шириной линии примерно 20 кГц.
Контроль мощности осуществляли с помощью
системы оптических фильтров и градиентного
диска. Перед измерениями с варьированием
мощности градиентный диск калибровали в
независимом эксперименте. Для измерений
использовался высокоподвижный образец
GaAs/AlGaAs с плотностью 2.4 · 1011 см−2.
Плотность перед измерениями была проверена
независимо с помощью оптической методики.

Были найдены оптические маркеры указываю-
щие на целочисленные факторы заполнения в
квантовом эффекте Холла и по ним посчитана
плотность.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И
ИХ ОБСУЖДЕНИЕ

Ранее в работе [8] было показано, что на фак-
торе заполнения ν = 1.5 наблюдаются необыч-
ные спектры люминесценции плазмаронов с тре-
мя пиками, в то время как на хорошо изученном
факторе ν = 2 наблюдается только один [7]. До
этого плазмароны наблюдались только в крио-
стате с минимальной температурой в T = 0.45 K.
В этой работе мы продолжаем данное исследова-
ние в более низких температурах вплоть до 40 мК
и в более широком диапазоне факторов заполне-
ния.

Нами было обнаружено, что при температу-
ре 40 мК пики люминесценции, которые соот-
ветствуют плазмаронам, существуют в дипазоне
факторов заполнения от ν = 1.2 до ν = 1.6. На
рис. 1 показаны спектры обычной люминесцен-
ции и плазмаронов. Обычная люминесценция
существует при любых факторах заполнения, в то
время как плазмаронная часть характерна толь-
ко для ν = 2 и для исследуемого нами диапазо-
на 1.2 < ν < 1.6. Наличие сразу трех пиков объ-
ясняется тем, что в нецелочисленных состояни-
ях корреляционная функция нетривиальная, что
создает несколько точек повышенной плотности
состояний в дисперсии магнитоплазмона. Соот-
ветственно мы видим проявление этих точек в
спектре плазмаронов как три пика. На рис. 2 по-
казано как мощность люминесценции плазмаро-
нов зависит от фактора заполнения. Как видно,
пик мощности приходится на фактор заполне-
ния ν = 1.41. Интересно замерить, что на рис. 2
на факторе заполнения ν = 4/3 виден локальный
максимум. В то же время на рис. 1 отчетливо вид-
но, что на ν = 4/3 происходит качественная пе-
рестройка плазмаронного спектра. Нет никаких
сомнений что в столь низкой температуре дробь
4/3 существует. Как известно дисперсия магнито-
плазмона почти полностью определяется корре-
ляционной функцией основного состояния. По-
нятно, что изменения в дисперсии магнитоплаз-
мона обязаны отразиться в спекте плазмарона,
что мы и наблюдаем.

Мы измерили температурную зависимость ин-
тенсивности излучения от температуры, но на
криостате растворения мы можем разогреть об-
разец только до 800 мК. Существенных измене-
ний замечено не было, что согласуется с резуль-
татами работы [8], где критическая температура
оценивалась в 1 К.

Чтобы выявить нелинейность спектра люми-
несценции от мощности накачки были прове-
дены соответствующие измерения. Результаты
представлены на рис. 4 в естественных коорди-
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Рис. 1. Спектры люминесценции при разных факто-
рах заполнения и фиксированной мощности накачки
20 мкВт и температуре 40 мК. Спектры люминесцен-
ции плазмаронов увеличены в 5 раз для наглядности.
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Рис. 2. Полная мощность люминесценции плазмаро-
нов в зависимости от фактора заполнения.
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Рис. 3. Спектр люминесценции при мощности накач-
ки 4.5 мВт. Дополнительно возникающие линии уве-
личены в 10 раз для наглядности
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Рис. 4. График зависимости мощности плазмаронов от
нормальной люминесценции. Здесь lg (In) – десятич-
ный логарифм полной мощности нормальной люми-
несценции и lg

(︀
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)︀
– десятичный логарифм полной

мощности плазмаронов, как обычных, так и двойных.
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натах: по оси x отложен логарифм мощности
обычной люминесценции. В широком диапазоне
мощностей зависимость мощности плазмаронов
является квадратичной по мощности обычной
люминесценции. Это происходит, потому что
плазмаронам для существования необходимо су-
ществование неравновесного ансамбля ферми-
дырок. При дальнейшем повышении мощности
кривая меняет наклон. Не очевидно, это проис-
ходит по объективным причинам или от просто-
го перегрева системы, так как мощность накачки
вырастает до довольно больших значений вплоть
до 4.5 мВт. Тем не менее нам удавалось удержи-
вать температуру внутри камеры смешивания в
пределах 100 мК. Выяснить температуру непо-
средственно образца представляется невозмож-
ным в данной постановке эксперимента. Хотя,
косвенно можно заключить, что наверно она не
слишком большая, потому что спектр, снятый на
максимальной мощности (см рис. 3), все еще вы-
глядит гладко.

Удивительным открытием было, что начиная
с определенной плотности мощности становит-
ся видно второй комплекс из четырех пиков, как
показано на рис. 3. Эти пики имеют интенсив-
ность на два порядка меньшую чем оригиналь-
ные плазманоны и отстоят от пиков обычной ре-
комбинации почти ровно в два раза дальше, чем
оригинальные плазмароны. По этой причине я
буду пока называть это двойными плазмаронами.
На рис. 4 показано, что зависимость интенсив-
ности спектра двойных плазмаронов похожа на
обычные плазмароны, но всегда на примерно два
порядка слабее. С одной стороны, можно объяс-
нить появление дополнительных пиков в рамках
плазмаронной концепции. Например, когда раз-
личных квазичастиц становится слишком мно-
го, плазмарон может образовывать короткоживу-
щие связанные состояния с ними, пики реком-
бинации которых мы и видим. Однако, тяжело
поверить в образование такой сложной экситон-
ной молекулы. Кажется, что если бы такой ком-
плекс и мог образоваться, то очень быстро он рас-
пался бы обратно на плазмарон + квазичасти-
ца задолго до рекомбинации. Необходимо отме-
тить, что когерентные свойства магнитоэкситон-
ного конденсата в холловском диэлектрике также
играют важную роль в понимании этих взаимо-
действий. В работе [9] исследуются когерентные
свойства триплетных циклотронных магнитоэк-

ситонов, что может помочь в дальнейшем прояс-
нении природы наблюдаемых «двойных плазма-
ронов». Чтобы прояснить природу этих загадоч-
ных пиков люминесценции потребуются даль-
нейшие исследования.

ЗАКЛЮЧЕНИЕ
Наши исследования показали, что плазмарон-

ные возбуждения проявляются в виде характер-
ных пиков в спектре люминесценции двумерных
электронных систем при температурах до 40 мК
и в диапазоне факторов заполнения от ν = 1 до
ν = 2. Особый интерес вызывает точка ν = 4/3,
где наблюдается изменения в корреляционной
функции, что значительно влияет на дисперсию
магнитоплазмона и, соответственно, на плазма-
ронный спектр. При высоких плотностях накач-
ки мы выявили появление нового комплекса пи-
ков, которые, вероятно, связаны с более сложны-
ми взаимодействиями внутри системы. Несмот-
ря на успешную фиксацию различных возбужде-
ний и перестроек спектра, природа наблюдаемых
«двойных плазмаронов» требует дальнейшего ис-
следования. Эти результаты открывают новые го-
ризонты для изучения плазмонных и квазича-
стичных эффектов в двумерных системах и рас-
ширяют наше понимание феноменов, обуслов-
ленных квантовым эффектом Холла.

Работа выполнена при финансовой поддерж-
ке Российского научного фонда (проект № 22-12-
00257).
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Revealing plasmaron dynamics at filling factors from 1 to 2
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We investigated the photoluminescence spectrum of two-dimensional electron systems in the filling factor
range from 1 to 2 at a temperature of 40 mK. Plasmaron peaks have been identified and their restructuring
observed at filling factor 4/3. At high pumping power, additional peaks, dubbed “double plasmarons” were
detected, indicating complex interactions within the system.
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