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ВВЕДЕНИЕ

Экспериментальные исследования на базе ге-
тероструктур ZnO/MgZnO дали новый импульс в
решении ряда фундаментальных проблем физи-
ки двумерных электронных систем (ДЭС). В этих
гетероструктурах реализуются высокоподвиж-
ные ДЭС со значениями параметра rs ≈ 10–30,
что предопределяет доминирующий характер
кулоновских корреляций. В этой ранее недосяга-
емой области параметров претерпели качествен-
ные изменения свойства ДЭС при экстремально
низких температурах. В частности, кулонов-
ские корреляции искажают иерархию уровней
Ландау, что сказывается на появлении новых
фаз целочисленного и дробного квантового
эффекта Холла [1], при rs ≈ 30 обнаружены даже
свидетельства вигнеровской кристаллизации [2].
В состояниях с четными факторами заполнения
обнаружена ферромагнитная неустойчивость
стоунеровского типа, сильнейшая перенорми-
ровка спинового и орбитального расщепления
уровней Ландау. Кроме того, в режиме сильного
взаимодействия rs ≫ 1 оказывается перенорми-
рованной и сама энергия электрон-электронного
обменного взаимодействия. Контринтуитивно
она оказывается не усиленной, а напротив –
многократно ослабленной. Причиной таких
трансформаций энергетического спектра явля-
ется сильное кулоновское смешивание уровней

Ландау, видоизменяющее характер корреляций
между электронами.

Несмотря на качественную перестройку энер-
гетического спектра, спиновая конфигурация
несжимаемых состояний КЭХ является колли-
неарной и определяется заполнением некоторо-
го числа спиновых подуровней. При отклоне-
нии от несжимаемых состояний магнитный по-
рядок в основном состоянии даже слабо взаи-
модействующих ДЭС становится топологически
нетривиальным. Так, за счет конкуренции меж-
ду обменным и зеемановским взаимодействием
заполнение спиновых уровней Ландау электро-
нами может происходить отнюдь не по одно-
частичному сценарию – могут реализовываться
спин-текстурные возбуждения типа скирмионов
[3] (топологических объектов, плавно нарушаю-
щих магнитный порядок вихреобразной конфи-
гурацией), скирмионных жидкостей и кристал-
лов [4]. Существование таких текстур подтвер-
ждено экспериментами на высококачественных
ДЭС на основе GaAs, в частности, по ускоренной
спиновой деполяризации [5, 6] и по наличию в
спектре низкоэнергетических коллективных воз-
буждений дополнительной спиновой моды [7, 8],
что указывает на нарушение спин-вращательной
симметрии системы. В других двумерных струк-
турах, например, на основе ZnO и AlAs, такие
текстуры оказываются энергетически невыгод-
ными из-за большого зеемановского расщепле-
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ния и уменьшенной в результате перенормиров-
ки обменной энергии [9].

ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА
Эксперименты проводились на гетерострук-

турах MgxZn1−xO/ZnO, выращенных методом
молекулярно-пучковой эпитаксии. Подвижно-
сти в двумерном транспортном канале превыша-
ли µt = 4 · 105 см2/Вс. Электронные плотности в
образцах составляли от 1.14 до 2.85 · 1011 см–2.
Эксперимент проводился в криостате с откач-
кой паров He3 и температурой ≈0.5 K в магнит-
ном поле, достигавшем 16 Тл. Оптические из-
мерения были выполнены с помощью перестра-
иваемого по длине волны Ti-Sp лазера с резо-
нансным удвоением частоты с диапазоном длин
волн 366–367 нм вблизи прямой оптической ще-
ли ZnO. Два кварцевых многомодовых оптиче-
ских световода, ориентированных под разными
углами к поверхности образца, использовались
для оптической накачки ДЭС и для сбора рас-
сеянного сигнала. Измерения дисперсии коллек-
тивных возбуждений проводились методом резо-
нансного неупругого рассеяния света (НРС). Пе-
редаваемый импульс регулировался в диапазоне
1.0–3.0 · 105 см–1 изменением взаимной ориен-
тации сведоводов и наклоном подвижного сто-
лика, на котором располагался образец. Сигнал
записывался с помощью спектрометра с азотно-
охлаждаемой CCD-камерой. Для достижения
максимальной точности в определении положе-
ния пиков НРС было использовано статистиче-
ское усреднение данных с N ≈ 20–30 спектров.

Объектами изучения были спектры НРС на
спиновых экситонах (SE) в диапазоне факторов
заполнения 0.3 ≤ ν ≤ 2. В коллинеарных по на-
правлению спина ферромагнитных состояниях
целочисленного КЭХ спиновой экситон ровно
один, и его дисперсия стартует от зеемановской
энергии согласно теореме Лармора [10]. При
нецелочисленных факторах заполнения возмож-
ны различные сценарии спиновых превраще-
ний. В частности, при формировании неколли-
неарных спиновых фаз, из-за нарушения спин-
вращательной симметрии, возможно появление
дополнительной низкоэнергетической спиновой
моды [7, 8]. Однако при качественно иных пара-
метрах системы похожие симптомы в спектре ни-
жайших спиновых возбуждений можно наблю-
дать и в ДЭС на основе ZnO.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И
ИХ ОБСУЖДЕНИЕ

На рис. 1 показана эволюция обработанных
позиций пиков SE в зависимости от фактора за-
полнения для двух образцов при двух различных
проекциях импульса. Для удобства анализа мно-
гочастичного вклада из энергий вычтена величи-
на зеемановской энергии. На рис. 1a очевидна
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Рис. 1. Зависимости энергии мод спинового эксито-
на за вычетом зеемановской энергии от фактора за-
полнения при 1 ≤ ν ≤ 2 на одном образце (а) и ν < 1
на другом (б). Для каждого графика указаны величи-
ны концентрации носителей и двумерного импульса.
Положение минимума энергетического расщепления
мод E1 и E2 ∆SE отмечено ν*. Положение ферромаг-
нитного перехода, отмечено νFMT.

асимметричная картина спиновых возбуждений
и наличие дополнительной моды SE2 с энергией
значительно ниже зеемановского расщепления.
Верхняя ветвь SE1 произрастает из ферромагнит-
ного спинового экситона и приобретает допол-
нительный многочастичный вклад в энергию при
отклонении в сторону ν > 1. Примечательно, что
центром антипересечения мод на этом и осталь-
ных образцах является точка ν ≈ 1.19. Нижняя
ветвь исчезает при стремлении к ν = 1, но со-
ответствующая экстраполяция кривой упирается
в энергию значительно ниже зеемановской. Для
дальнейшего анализа важно также обратить вни-
мание на тот факт, что нижняя мода является ис-
чезающим остатком от спинового экситона пара-
магнитной фазы и непрерывно эволюциониру-
ет к точке, обозначенной на графике νFMT. При
этом факторе заполнения парамагнитная фаза
исчезает, а вместо нее появляется ферромагнит-
ная с известной дисперсией [11]. В окрестности
этого перехода каждой фазе соответствует одна
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экситонная мода и нет никаких признаков суще-
ствования спиновых текстур.

На рис. 1б помимо упомянутого поведения в
окрестности холловского ферромагнетика ν = 1
результирующая зависимость обменного вклада в
энергию SE от фактора заполнения имеет макси-
мум при ν = 1/3. При ν в диапазоне 1/3 . . . 1 об-
менный вклад в энергию SE значительно умень-
шен, но остается положительным – это свиде-
тельствует о сохранении ферромагнитной кон-
фигурации. Слабые локальные пики обменной
энергии наблюдаются вблизи других состояний
ν = 2/5, 1/2, 2/3, но едва выделяются на фоне
зашумленности данных. Качественно иной мас-
штаб энергии в окрестности состояния ДКЭХ
ν = 2/3 демонстрирует исчезновение электрон-
дырочной симметрии на нижайшем уровне Лан-
дау вследствие перемешивания уровней Ландау.
В том числе на это указывает резкий обвал энер-
гии при ν ≈ 0.8.

В картине коллективных возбуждений проис-
ходят существенные изменения при изменении
наклона магнитного поля, относительно поверх-
ности образца (рис. 2a). Спиновые моды SE1 и
SE2 продолжают демонстрировать неизменность
в антипересечении до достижения углаΘс, но при
больших углах наклона положение фактора за-
полнения ν* начинает смещаться в сторону боль-
ших факторов заполнения (квадратные символы
на рис. 2a). В то же время положение скачкооб-
разного фазового перехода νFMT смещается в сто-
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Рис. 2. Зависимости факторов заполнения точки ан-
типересечения ν* (квадратные символы) и ферромаг-
нитного перехода νFMT (круглые символы) от угла на-
клона магнитного поля (а). Эволюция многочастич-
ного вклада в энергию спиновых экситонов от факто-
ра заполнения при углах, превышающих Θc (б).

рону меньших факторов заполнения непрерыв-
но, начиная с угла, соответствующего ферромаг-
нитному переходу на факторе ν = 2 [12].

При дальнейшем увеличении наклона гибри-
дизация двух мод становится неразрешимой. При
этом в зависимости энергии SE от фактора запол-
нения проявляется симметрия c центром на фак-
торе заполнения ν = 3/2 (рис. 2б). В левой части
графика многочастичный вклад в энергию по-
ложительный, а в правой – отрицательный. Это
полностью согласуется с положительной спино-
вой жесткостью ферромагнитной фазы при ν = 1
и отрицательной при ν = 2. Области фазовых пе-
реходов расширяются на областях 1 < ν < 1.3 и
1.7 < ν < 1.3 соответственно. Границы этих обла-
стей близки к ν ≈ 4/3 и ν ≈ 5/3, что указывает на
возможную ключевую роль этих состояний ДК-
ЭХ в изменении спиновой структуры ДЭС.

Неожиданный факт – при промежуточных
факторах заполнения между обеими понятными
ферромагнитными фазами спиновые возбужде-
ния резко перестраиваются – их энергия утрачи-
вает обменно-кулоновский вклад и сравнивается
с зеемановской при ν → 3/2 (рис. 2б). Необхо-
димо отметить, что на этих экспериментальных
кривых наблюдалась область факторов заполне-
ния (укрупненные символы), где было невоз-
можно спектрально разрешить наличие тонкой
структуры линий SE, наблюдается лишь некото-
рое уширение пиков НРС. В любом случае, по
надлому зависимости многочастичной энергии
SE от фактора заполнения угадываются два фа-
зовых перехода – из квантово-холловских фер-
ромагнетиков вблизи ν = 1 и ν = 2 в предпо-
ложительно парамагнитную фазу в окрестности
ν = 3/2. Интерес вызывает также дисперсионная
зависимость ключевых энергетических парамет-
ров. Расщепление ∆SE двух антипересекающих-
ся мод SE несмотря на некоторый разброс то-
чек показывает окололинейную зависимость от
импульса (рис. 3a). Это указывает на кулонов-
скую природу расщепления мод. Несколько то-
чек на дисперсионных кривых от безразмерного
импульса для ν = 1/3 и ν = 1 приведены на рис. 3б.
Из этих данных можно извлечь спиновую жест-
кость состояний КЭХ ν = 1/3 и ν = 1 (представ-
лены на рис. 3б).

ЗАКЛЮЧЕНИЕ
В заключение, проведенное исследование дву-

мерных электронных систем (ДЭС) на основе ге-
тероструктур MgZnO/ZnO позволило раскрыть
новые аспекты магнитного упорядочения в усло-
виях сильных кулоновских корреляций. Была
установлена важная роль кулоновского смеши-
вания уровней Ландау в формировании спино-
вых возбуждений и их эволюции при измене-
нии угла наклона магнитного поля. Эти наблю-
дения свидетельствуют о нетривиальной дина-
мике спиновой конфигурации. При этом спи-
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Рис. 3. Дисперсионные зависимости энергетического расщепления двух мод SE в области проявления спино-
вых текстур (а) и энергии SE на факторах заполнения ν = 1 и ν = 1/3 (б).

новая жесткость демонстрирует качественно но-
вое поведение, обусловленное сильной кулонов-
ской перенормировкой. Таким образом, иссле-
дование открывает путь к более глубокому по-
ниманию природы взаимодействий в двумерных
электронных системах с сильными корреляция-
ми. Выявленные фазовые переходы и спиновые
текстуры представляют особый интерес для фун-
даментальной физики и могут стать основой для
будущих разработок.

Работа выполнена при финансовой поддерж-
ке Российского научного фонда (проект № 22-12-
00257).
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We presented the results of a study of two-dimensional electron systems implemented in MgZnO/ZnO
heterostructures with high interaction parameters. Using the inelastic light scattering method, we observed
ferromagnetic transitions and spin textures. We also studied the dispersion dependences of key energy
parameters.
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