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Изучены свойства периодических диэлектрических структур из фосфида галлия (GaP), покрытых
слоем серебра, и позволяющих усиливать сигнал поверхностно-усиленного неупругого рассеяния
света (SERS). Получены зависимости интенсивности сигнала рассеяния от периода для разных
высот структуры. Проведено сравнение интенсивностей сигнала рассеяния для SERS-структур на
подложках SiO2 и GaP для длин волн лазерного возбуждения 532, 785 и 1064 нм. Обнаружена спо-
собность структур на подложке GaP с тонким слоем металла усиливать сигнал более чем на 7 по-
рядков в инфракрасном частотном диапазоне. Изучена зависимость коэффициента усиления ра-
мановского сигнала от толщины напыленного слоя.
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В настоящее время актуальной задачей являет-
ся совершенствование методов детектирования
сверхмалых количеств вещества, а также анали-
за его состава, и одним из таких методов яв-
ляется спектроскопия поверхностно-усиленного
неупругого рассеяния света, или спектроско-
пия гигантского комбинационного рассеяния
(surface-enhanced Raman scattering, SERS). Дан-
ный вид диагностики широко применяется в та-
ких передовых отраслях, как медицина, фарма-
кология, геология, химия и системы безопасно-
сти [1]. В данный момент рамановская спектро-
скопия, основанная на явлении гигантского ком-
бинационного рассеяния [2], находит примене-
ния преимущественно на длинах волн лазерно-
го возбуждения в диапазоне 450–785 нм из-за об-
ратной зависимости интенсивности неупругого
рассеяния от длины волны света и широкой до-
ступности детекторов излучения [3]. Выбор та-
кого диапазона порождает несколько существен-
ных проблем, таких как как сильная фоновая лю-
минесценция, деградация органических молекул
из-за сильного поглощения света, также – в слу-
чае поверхностно-усиленного рассеяния – фун-
даментальное ограничение на коэффициент уси-

ления ввиду уменьшения параметра добротности
плазменных волн в более коротковолновом диа-
пазоне вследствие их затухания. Эти недостат-
ки видимого диапазона лазерного возбуждения
вынуждают смещаться в сторону инфракрасного
излучения, где снижается затухание плазменных
волн в металлах, практически исчезает фоно-
вая люминесценция и деградация молекул. Одна-
ко чувствительность детекторов в инфракрасном
частотном диапазоне ниже, чем детекторов види-
мого света, следовательно, необходимо дальней-
шее усиление рамановского сигнала для получе-
ния возможности детектировать малые концен-
трации исследуемых веществ. Ввиду этого, разра-
ботка стабильных SERS-активных наноструктур,
работающих в ближней ИК-области и обеспечи-
вающих максимальное усиление сигнала, являет-
ся актуальной задачей современной рамановской
спектроскопии.

Традиционно основой для SERS-активных на-
ноструктур служит подложка из SiO2 [4]. В дан-
ной работе были рассмотрены структуры, сфор-
мированные на подложке фосфида галлия (GaP),
который имеет показатель преломления 3.2 для
длины волны в 785 нм, в то время как диоксид
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кремния при аналогичной длине волны имеет
показатель преломления 1.5 [5]. Данная характе-
ристика материала обуславливает степень сжатия
локального электрического поля в поверхност-
ной плазменной волне у границы раздела металл-
диэлектрик, что в свою очередь влияет на ин-
тенсивность рассеяния и, следовательно, потен-
циально может позволить улучшить чувствитель-
ность метода [6]. Смещение плазменного резо-
нанса в более длинноволновую область при уве-
личении показателя преломления диэлектрика
нагляднее всего иллюстрируется формулой (1):

kspp =

√︃
ℰm (ω)ℰd

ℰm (ω) + ℰd
k0 (1)

где kspp – волновой вектор поверхностного
плазмон-поляритона (surface plasmon polariton),
k0 – волновой вектор падающей световой вол-
ны, ℰm и ℰd– диэлектрические проницаемости
металла и диэлектрика соответственно.

Для поверхностного усиления рамановского
сигнала в ИК диапазоне в данный момент разра-
ботаны металл-диэлектрические метаповерхно-
сти на SiO2 представляющие собой структури-
рованную поверхность оксида кремния в виде
столбиков с квадратным сечением, с напылен-
ным сверху металлическим слоем [3]. В качестве
первого этапа экспериментов по анализу усили-
вающих свойств были изготовлены аналогичные
структуры на поверхности GaP.

Исследуемые периодические структуры созда-
вались следующим образом. На монокристал-
ле GaP с ориентацией (110) путем электрон-
ной литографии и плазмохимического травле-
ния были созданы активные области размером

100 × 100 мкм в виде периодических столбиков с
различными периодами и двумя высотами. Диа-
пазон периодов составлял 300–2400 нм с шагом
50 и 100 нм, и планарный размер столбика состав-
лял половину от величины периода. Были реали-
зованы структуры с глубинами травления 230 и
500 нм. Далее для усиления рамановского рассе-
яния структуры покрывались слоем серебра тол-
щиной 40 нм путем термического напыления в
вакууме.

Исследование усиливающих свойств изготов-
ленных структур проводилось следующим обра-
зом. Сначала их поверхность покрывалась од-
номолекулярным слоем органического вещества
4-АВТ (4-аминобензентиол). Это производилось
посредством нанесения капли аналита на ак-
тивную область подложки и последующего ее
высыхания. Затем проводилась оценка величи-
ны сигнала рамановского рассеяния при длине
волны лазерного возбуждения 1064 нм. Наи-
более отличительный пик в спектре неупруго-
го рассеяния 4-АВТ, характеризующий возбуж-
дение колебательной моды бензольного кольца
С6Н6 [7], находится на величине рамановского
сдвига 1073 см–1. Интенсивность этого пика слу-
жила для оценки коэффициента усиления рама-
новского сигнала.

Были получены зависимости интенсивности
рамановского сигнала от периода структур. На
рис. 1а продемонстрирована зависимость интен-
сивности сигнала неупругого рассеяния света
для спектральной компоненты со сдвигом 1073
см–1 и структуры с глубиной травления 500 нм.
В этом случае максимумы усиления раманов-
ского сигнала были достигнуты на областях с
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Рис. 1. Зависимость интенсивности сигнала неупругого рассеяния света для спектральной компоненты со сдви-
гом 1073 см–1 от периода структуры «столбики» с высотой 500 (а) и 230 нм (б) на объемном GaP. СЭМ изоб-
ражения активной области структурированного GaP с периодом 2400 нм с высотой 500 и 230 нм приведены на
вставках.
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глубинами травления диэлектрических столби-
ков 400 и 750 нм. На рис. 1б приведена аналогич-
ная зависимость уже для глубины травления 230
нм. Соответственно, максимумы усиления сиг-
нала реализовывались на периодах структур 350,
600 и 800 нм. Это связано с тем, что зависи-
мость интенсивности сигнала рамановского рас-
сеяния от соотношения периода и высоты струк-
туры сильнее, чем от каждого из этих парамет-
ров по отдельности. Также на вставках к рис. 1а и
1б показаны изображения исследуемых структур,
полученные сканирующей электронной микро-
скопией.

Главной характеристикой SERS-структур яв-
ляется коэффициент усиления, который опре-
деляется соотношением интенсивностей поверх-
ностно усиленного и объемного не усиленно-
го рамановских сигналов, приведенных к еди-
ной концентрации вещества. В данной работе ко-
эффициент усиления был оценен путем сравне-
ния спектра, снятого с изготовленной подлож-
ки, со спектром, полученным с метаструктуры
на подложке SiO2 с известным коэффициентом
усиления [3], с поправками на режимы снятия.
Для сравнения была взята структура на подлож-
ке из GaP с периодом столбиков 400 нм и высо-
той 500 нм, как наиболее подходящая для уси-
ления из рассмотренных ранее. Обнаружено, что
коэффициент усиления сигнала имеет тот же по-
рядок, что и лучшие структуры на SiO2, а имен-
но порядка 107. Можно ожидать, что увеличение
коэффициента усиления может быть достигнуто
путем выбора более подходящего периода и вы-
соты структуры, а также толщины и состава ме-
таллического слоя.

Во второй части экспериментов по анализу
усиливающих свойств было проведено иссле-

дование неструктурированной поверхности GaP
с тонким слоем серебра, то есть островковые
SERS-структуры. Известно, что структуры с ост-
ровковым серебром на гладкой поверхности SiO2
работают в видимом диапазоне возбуждения на
длине волны лазера 532 нм [7], а в ИК обла-
сти усиление не наблюдается. Это подтверждают
результаты, приведенные на рис. 2а. Отличия в
положениях линий возбуждения в спектрах, по-
лученных для разных длин волн возбуждения и
для разных структур, объясняются особенностью
механизма SERS – усиление различных колеба-
тельных и вращательных мод вещества происхо-
дит с различной интенсивностью, а также часто-
ты мод испытывают сдвиги. Для смещения ре-
зонанса в сторону инфракрасного диапазона на
структурах из SiO2 требуется создавать металл-
диэлектрические структуры, описанные в первой
части работы, для изготовления которых требу-
ется применять такие сложные технологические
операции, как электронно-лучевая литография и
плазмохимическое травление.

Исследуемые структуры создавались путем
термического напыления на монокристалл GaP
тонкого металлического слоя толщиной 10–70 A,
где в качестве металла также использовалось се-
ребро. В процессе снятия спектров с полученных
структур вещества 4-АВТ на длинах волн ла-
зерного возбуждения 532 нм, 785 нм и 1064 нм
была обнаружена способность островковых
SERS-структур на поверхности GaP усиливать и
в инфракрасном частотном диапазоне, в отли-
чии от структур на поверхности SiO2 (рис. 2б).
Данный эффект объясняется тем, что у GaP в
два раза больше коэффициент преломления, чем
у SiO2, следовательно, плазменная частота на-
ночастиц серебра смещается в длинноволновую
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Рис. 2. Рамановские спектры вещества 4-АВТ, полученные на наноостровковых SERS-структурах на SiO2 (а) и
GaP (б) с толщиной наноструктурированного слоя серебра 60 A. Длины волн лазерного возбуждения: 532, 785
и 1064 нм.
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область, что позволяет нам наблюдать эффект
гигантского комбинационного рассеяния на
этих структурах в ближнем ИК диапазоне.

На рис. 3 представлен график зависимости ин-
тенсивности сигнала неупругого рассеяния све-
та для спектральной компоненты с рамановским
сдвигом 1073 см–1 при возбуждении лазером с
длиной волны излучения 1064 нм от толщины ме-
таллического слоя. На величине 50–60 A наблю-
дается наибольшая интенсивность сигнала, что
связано с тем, что при дальнейшем увеличении
толщины Ag пленка становится сплошной, и это

препятствует возможности возбуждения поверх-
ностного плазмонного резонанса.

Анализ коэффициента усиления изготовлен-
ных островковых SERS-структур на поверхно-
сти GaP, проведенный аналогично вышеописан-
ной процедуре, показал значение, превышаю-
щее 7 порядков. На рис. 4 представлены спек-
тры характерного вещества 4-АВТ, полученные
на длине волны лазерного излучения 1064 нм
с трех типов подложек: структурированные по-
верхности SiO2 и GaP с напыленным толстым
слоем серебра и островковая структура на глад-
кой поверхности GaP с тонким слоем серебра.
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Таким образом, нами были исследованы
поверхностно-усиливающие свойства различ-
ных структур, изготовленных на основе GaP,
и выполнено сравнение с существующими
структурами на основе SiO2. Показано, что
коэффициент усиления исследуемых струк-
тур имеет сравнимую величину, а именно –
более, чем 7 порядков. Обнаружена возмож-
ность поверхностного усиления рамановского
сигнала в инфракрасном частотном диапазоне
островковыми SERS-структурами на гладкой
поверхности GaP. Этот результат открывает пер-
спективы применения структур на основе GaP
для поверхностно-усиленной спектроскопии
неупругого рассеяния света в инфракрасном
частотном диапазоне, изготовленных без необ-
ходимости использования трудоемких процедур
литографии и травления.

В работе использовано оборудование ЦКП НО
ИФТТ РАН. Исследование выполнено при фи-
нансовой поддержке Российского научного фон-
да (проект № 19-72-30003).
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Investigation of the possibility of using island SERS-structures

on a GaP substrate for surface-enhanced inelastic light scattering

in the infrared frequency range

S. M. Makarovskaya*, V. V. Solovyev, T. D. Rudakov, I. V. Kukushkin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
*e-mail: svetlandij@issp.ac.ru

We studied the properties of GaP-based periodic dielectric structures with a silver layer coating which
can enhance the signal of surface-enhanced inelastic light scattering (SERS). The dependences of the
scattering signal intensity on the period for different structure heights were obtained. A comparison of the
scattering signal intensities for SiO2 and GaP SERS-structures for laser excitation wavelengths of 532, 785
and 1064 nm was performed. The ability of GaP-based structures with a thin metal layer to enhance the
signal by more than 7 orders of magnitude in the infrared frequency range was found. The dependence of
the Raman signal enhancement on the thickness of the deposited layer was studied.

Keywords: Raman spectroscopy, surface-enhanced spectroscopy, giant Raman scattering enhancement,
surface plasmon resonance, gallium phosphide, nanoengineering
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