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В диапазоне длительностей до 1.5 нс исследована временная эволюция поляризованных спектров
излучения спинорных экситон-поляритонных конденсатов в двойных туннельно-связанных по-
тенциальных ловушках в высокодобротном GaAs/AlAs микрорезонаторе при T = 2 К, резонансно
возбуждаемых пикосекундными лазерными импульсами. Получена оценка для времени спиновой
релаксации конденсатов в двойной ловушке τS ≈ 10 нс. Обсуждается влияние туннельного взаи-
модействия и анизотропии потенциала ловушек на энергетический спектр поляритонных мод и
динамику поляризации спинорного конденсата в них.

Ключевые слова: микрорезонатор, экситон-поляритоны, спинорный поляритонный конденсат, бо-
зонный джозефсоновский переход, время-разрешенная спектроскопия.

DOI: 10.31857/S0367676525020184, EDN: CWDRPR

ВВЕДЕНИЕ

Экситонные поляритоны в полупроводнико-
вых микрорезонаторах (МР) – спинорные бо-
зонные квазичастицы, образующиеся при взаи-
модействии света и экситонов в активной об-
ласти МР в режиме сильной экситон-фотонной
связи [1–4]. Большой интерес к поляритонным
системам вызван тем, что, благодаря очень ма-
лой эффективной массе, mLP < 10−4me, обуслов-
ленной наличием фотонной компоненты, в них
могут формироваться равновесные когерентные
состояния при относительно низких плотностях
около 1010 см–2 и высоких, вплоть до комнат-
ной, температурах. Наличие фотонной компо-
ненты в экситонных поляритонах открывает ши-
рокие возможности непосредственного форми-
рования с помощью современных методик по-
ляритонных систем в МР с априори заданны-
ми не только пространственными и спектраль-
ными характеристиками, но и пространственно-
временной когерентностью, необходимыми как
для фундаментальных исследований физики бо-
зонных поляритонных систем, так и при созда-
нии оптических элементов и излучателей для на-

нофотоники или для их использования в полно-
стью оптических устройствах [5–9].

Одним из наиболее ярких проявлений кванто-
вого коллективного поведения материи является
эффект Джозефсона: протекание без диссипации
сквозь барьер классически запрещенного тока.
Традиционные джозефсоновские переходы фор-
мируются с помощью сверхпроводников, разде-
ленных тонкими непроводящими оксидными ба-
рьерами. Их бозонным аналогом является так на-
зываемый бозонный джозефсоновский переход,
в котором два конденсата бозонов локализова-
ны в двойной потенциальной ловушке. Для пере-
хода на основе бозе-эйнштейновских конденса-
тов, локализованных в двойных ловушках [10, 11]
были продемонстрированы эффекты Джозефсо-
на на переменном и постоянном токе [12], макро-
скопическая квантовая самолокализация и джо-
зефсоновские плазменные колебания [13].

В экситон-поляритонных системах бозон-
ные джозефсоновские переходы формируются
при локализации спинорных поляритонных
конденсатов в двух туннельно-связанных по-
тенциальных ловушках (ДПЛ) в МР, что требует
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использования для его описания четырехмодо-
вой модели. Общий модельный гамильтониан
для описания взаимодействующих спинорных
поляритонов в правой (R) и левой (L) ловушках в
базисе циркулярно-поляризованных состояний
σ+ и σ− (обозначены ↑ и ↓) имеет вид:

Ĥc =
∑︁

j=L,R;σ=↑,↓

Ejc+jσcjσ + J
∑︁
σ=↑,↓

(c+LσcRσ + c+RσcLσ)+

+
∑︁
j=L,R

(Djeiφ jc+j↑cj↓ + Dje−iφ jc+j↓cj↑)+

+G
(︀
eiΦ(c+R↓cL↑ + c+L↓cR↑) + e−iΦ(c+R↑cL↓ + c+L↑cR↓)

)︀
+

+
α

2

∑︁
j=L,R;σ=↑,↓

c+jσc+jσcjσcjσ. (1)

Здесь первый член соответствует свободным
поляритонам в ловушках, второй член описыва-
ет спин-консервативное туннелирование частиц
между ними, а третий и четвертый – межспино-
вое взаимодействие поляритонов, обусловленное
анизотропией потенциала ловушек. Последний
член описывает поляритон-поляритонное взаи-
модействие [14].

Стандартная двухмодовая модель может быть
использована только в качестве первого прибли-
жения в некоторых частных случаях, когда эф-
фектами, обусловленными анизотропией потен-
циала, можно пренебречь [15]. В частности, это
приближение удовлетворительно описывает ди-
намику поляритонов в ДПЛ со спиновыми рас-
щеплениями в ловушках 2Dl, малыми по сравне-
нию с туннельным взаимодействием, J, на вре-
менах t, много меньших h/2Dl и времен спиновой
релаксации τS. В исследованиях таких бозонных
джозефсоновских переходов был продемонстри-
рован и объяснен в рамках двухмодовой моде-
ли целый ряд различных динамических режимов,
реализующихся при разных соотношениях энер-
гий туннельной связи двух конденсатов и межча-
стичного взаимодействия [16–23].

Наличие спинового расщепления поляритон-
ных состояний в ДПЛ приводит к появлению ос-
цилляций не только плотности конденсата, но и
его поляризации. Например, для описания дина-
мики спинорного конденсата в ДПЛ в магнитном
поле в работе [24] была использована четырехмо-
довая модель.

В данной работе исследуется временная эво-
люция спинорных поляритонов в туннельно-
связанных ДПЛ с пониженной симметрией в
отсутствие магнитного поля в GaAs/AlAs МР с
(InGa)As квантовыми ямами в активной обла-
сти в широком интервале времен t ≈ 1.5 нс >
> h/2Dl ≈ 0.1 нс, когда спиновые эффекты ста-
новятся существенными. Обсуждается влияние
туннельного взаимодействия и анизотропии по-
тенциала ловушек на энергетический спектр по-
ляритонных мод и динамику поляризации спи-

норного конденсата в ДПЛ со слабо и сильно на-
рушенной симметрией С2.

ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА
В работе исследована система спинорных эк-

ситонных поляритонов в туннельно-связанных
ДПЛ в 2λ GaAs/AlAs МР, выращенном мето-
дом молекулярно-лучевой эпитаксии на подлож-
ке GaAs с ориентацией [100]. Верхнее (нижнее)
брэгговское зеркало из 25 (29) пар слоев AlAs и
GaAs обеспечивают высокую добротность МР. В
активной области МР находится 4 набора из 3
квантовых ям In0.05Ga0.95As толщиной 10 нм, раз-
деленных барьерами из GaAs толщиной 10 нм.
Расщепление Раби составляло 7.5 мэВ.

Резонансное возбуждение поляритонов на
нижней поляритонной ветви осуществлялось пе-
рестраиваемым пикосекундным Ti-сапфировым
лазером с синхронизацией мод (частота повто-
рения импульсов – 80 МГц, длительность –
2 пс, спектральная ширина – 1.1 мэВ) на энер-
гии ℏωp = ELP(k = 0), где ELP(k = 0) – энергия
поляритонов с нулевым планарным волновым
вектором k. Энергии уровней поляритонов в
ловушке находятся не глубже 0.2 мэВ от ELP
в барьере, поэтому заполнение поляритон-
ных состояний в ДПЛ происходит вследствие
резонансного возбуждения локализованных
состояний и локализации в них поляритонов,
возбужденных вблизи дна зоны. Для записи вре-
менной динамики излучения МР использовалась
стрик-камера с временным разрешением 10 пс.

Исследованные ДПЛ сформированы в МР в
процессе роста образца вследствие простран-
ственных флуктуаций ширины (InGa)As кванто-
вых ям и содержания In. Расположение ловушек
в МР и их размер определялись на основании из-
мерений пространственного распределения ин-
тенсивности излучения поляритонов с разреше-
нием 1.5 мкм. Нами был найден ряд ДПЛ с раз-
мерами 4–8 мкм, в которых ловушки располага-
лись вдоль оси [110]. Исследованы ДПЛ с уровня-
ми поляритонов на 0.1–0.2 мэВ ниже ELP, в ко-
торых периоды осцилляций плотности поляри-
тонов между ловушками, с одной стороны, бы-
ли много меньше времени жизни поляритонов
τLP ≈ 200 пс, а с другой, много больше временно-
го разрешения стрик-камеры (10 пс).

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И
ИХ ОБСУЖДЕНИЕ

Энергетические уровни в ДПЛ

В работе исследована временная эволюция по-
ляризации излучения поляритонов из двух ДПЛ
со слабо (№ 1) и сильно (№ 2) нарушенной сим-
метрией С2 при возбуждении лазерными им-
пульсами с линейной поляризацией вдоль оси
ДПЛ (πx) и по нормали к ней (πy). Линейно-
поляризованные спектры излучения полярито-
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нов из ДПЛ № 1 и № 2 и неполяризованные из
барьеров на расстоянии 10 мкм от ДПЛ, запи-
санные со спектральным разрешением ∆ℏω =
= 70 мкэВ при резонансной несимметричной
по ловушкам накачке в пятне диаметром 10 мкм
пикосекундными импульсами на энергии ℏωp =
= ELP(k = 0) = 1453.5 мэВ показаны на рис. 1а
и 1г. Спектры регистрировались в поляризации,
совпадающей с поляризацией импульса накачки,
в интервале времени задержки δt = 360 ± 40 пс,
когда фотовозбужденные поляритоны с больши-
ми k уже «разбежались» за пределы исследуемой
области размером ≈30 мкм.

Из рис. 1а и 1г можно видеть, что в обеих
ДПЛ нижние, симметричные по ловушкам, со-
стояния поляритонов (S) находятся на глубине
150–180 мкэВ от барьера, а также нижние состоя-
ния как S, так и асимметричных (AS) мод преиму-
щественно поляризованы вдоль оси ДПЛ. Рас-
щепления πx и πy компонент S и AS уровней рав-
ны∆x = 105±3 мкэВ и∆y = 93±3 мкэВ в ДПЛ № 1
и∆x = 110±3 мкэВ и∆y = 102±3 мкэВ в ДПЛ № 2.
Спиновые расщепления S и AS мод равны ∆S =
= 48 ± 3 мкэВ и ∆AS = 36 ± 3 мкэВ в ДПЛ № 1
и ∆S = 12.5 ± 3 мкэВ и ∆AS = 6 ± 3 мкэВ в ДПЛ
№ 2. Расщепления ∆S и ∆AS меньше ∆x и ∆y, что
свидетельствует о том, что константа туннельной
связи J больше констант спинового взаимодей-
ствия, DL, DR и G, величина которых определя-
ется пониженной до C2v симметрией интерфей-
сов GaAs/InGaAs [25], латеральной асимметрией
ДПЛ с двумя ловушками вдоль оси [110] и пони-
женной симметрией каждой из ловушек.

Динамика пространственного распределения и
поляризации спинорного поляритонного

конденсата в ДПЛ

Временные зависимости пространственного
распределения (в направлении оси Ox) интенсив-
ностей поляризованных πx и πy компонент излу-
чения поляритонов при когерентном возбужде-
нии πx поляризованными импульсами показаны
в цвете на рис. 1б и 1в для ДПЛ № 1 и на рис. 1д и
1е для ДПЛ № 2. Интенсивности этих компонент
из левой (L), правой (R) и одновременно двух (LR)
ловушек, Iij,K(t), показаны на рис. 2. Первые два
индекса i и j в Iij,K(t) обозначают линейные поля-
ризации импульса накачки и детектируемого из-
лучения, а K – исследованные ловушки L, R и LR.
На рис. 3 и 4 показана динамика степеней линей-
ной поляризации,

ρ
l
i,K = (Iii,K − Iij,K)/(Iii,K + Iij,K),

где i = x, y, j ̸= i, линейной диагональной поляри-
зации,

ρ
ld
i,K = (Ii,x+y,K − Ii,x−y,K)/(Ii,x+y,K + Ii,x−y,K),

и величины, ZLR,i = (Iii,L − Iii,R)/(Iii,L + Iii,R),
i = x, y, отражающей видность осцилляций меж-

ду линейно-поляризованными конденсатами в
ДПЛ.

Интенсивности Iij,K(t) пропорциональны сум-
марной плотности поляритонных компонент в S
и AS состояниях (ψj,K,S + ψj,K,AS)(ψ*j,K,S + ψ

*
j,K,AS)

с поляризацией πj. В ДПЛ с нарушенной
симметрией С2 πx и πy поляризованные им-
пульсы возбуждают конденсат во всех четы-
рех пространственно-спиновых состояниях
с нулевой суммарной волновой функцией в
ортогональной поляризации в t = 0.

На рис. 2 видно, что πx импульсы в обеих
ДПЛ возбуждают, в основном, состояние кон-
денсата с поляризацией, совпадающей с поляри-
зацией накачки: интенсивность излучения кон-
денсата в πy поляризации после окончания им-
пульса меньше 5%. В дальнейшем затухание кон-
денсата сопровождается осцилляциями его по-
ляризации и плотностей в ловушках, при этом
интенсивность излучения поляритонов из ДПЛ
Ix,LR(t) = Ixx,LR(t) + Ixy,LR(t), пропорциональная
NLR(t) в ДПЛ, затухает экспоненциально со вре-
менем жизни поляритонов, τLP = 200 ± 10 пс, c
небольшими осцилляциями в пределах 3%.

На рис. 2а–2в видно, что в ДПЛ № 1 с симмет-
рией, близкой к C2, интенсивности ортогональ-
ных поляризациях Ixy,LR и Iyx,LR после окончания
импульса накачки медленно нарастают при t ≤ 55
пс и в дальнейшем уменьшаются экспоненциаль-
но с периодом осцилляций Txy = 115 ± 4 пс, при
этом ρl

x,LR и ρl
y,LR (рис. 3) достигают первого ми-

нимума при t = 57± 4 пс ≈ Txy/2 и далее осцилли-
руют синфазно в интервале от 0.8 до 0.9. Подоб-
ное поведение свидетельствует о том, что ортого-
нально поляризованная компонента полярито-
нов возбуждается не за счет их спиновой релакса-
ции, а непосредственно пикосекундным импуль-
сом накачки вследствие несовпадения линейных
поляризаций собственных мод в ДПЛ с осями Ox
и Oy. Для возбуждения 5% ортогональной компо-
ненты достаточно отклонения поляризации соб-
ственных мод от оси Ox на угол ≤ 10∘.

Осцилляции линейной поляризации излуче-
ния конденсата в ДПЛ обусловлены спиновыми
расщеплениями мод S и AS. Несовпадение энер-
гий ∆S (48 мкэВ) и ∆AS (36 мкэВ) ведет к на-
блюдаемому в эксперименте отклонению фор-
мы осцилляций ρl

x,LR и ρl
y,LR от гармонической.

Сравнение зависимостей интенсивности излуче-
ния поляритонов из левой ловушки в коллине-
арной и ортогональной с импульсом накачки по-
ляризациях на рис. 2а и 2б показывает, что, как
и следовало ожидать, взаимовлияние эффектов
туннельной связи между ловушками и наруше-
ния симметрии ДПЛ наиболее сильно проявля-
ется в излучении мало заполненных мод Ixy,L(t)
и Iyx,L(t). В компонентах излучения, коллинеар-
ных накачке, Ixx,L(t) и Iyy,L(t), осцилляции, обу-
словленные туннелированием конденсата между
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Рис. 1. Поляризованные спектры излучения экситонных поляритонов в ДПЛ № 1 (а) и № 2 (г), при одинако-
вых линейных поляризациях накачки и регистрации; временная эволюция пространственного распределения
излучения πx (б, д) и πy (в, е) поляризованных компонент конденсата вдоль оси расположения ловушек (Oх) в
ДПЛ при накачке πx поляризованными пикосекундными импульсами в ДПЛ № 1 (б, в) и № 2 (д, е) Интенсив-
ность показана в цветной шкале в логарифмическом масштабе. Температура образца 2 К.
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Рис. 2. Экспериментальные (а, б, г, д) и рассчитанные (в, е) в рамках линейной четырехмодовой модели вре-
менные зависимости интенсивности излучения компонент поляритонного конденсата с линейными πy и πx
поляризациями из левой (L), правой (R) и обеих (L+R) ловушек для ДПЛ № 1 при накачке лазерными импуль-
сами с поляризацией πy (а) и πx (б, в) и для ДПЛ № 2 при накачке импульсами с поляризацией πx (г–е). Для ДПЛ
№ 2 на графике г показаны зависимости интенсивностей излучения диагонально поляризованных компонент
конденсата, πy ± πx.

ловушками, близки к гармоническим с периода-
ми Tx = 39 ± 1 пс и Ty = 45 ± 1 пс, которые хо-
рошо согласуются с рассчитанными из измерен-
ных (рис. 1а) расщеплений мод S и AS в πx по-
ляризации Tx = h/∆x ≈ 39.5 пс и в πy поляризации
Ty = h/∆y ≈ 45.2 пс. Амплитуда видности осцил-
ляций ZLR,i также остается близкой к рассчитан-
ной 40% во всем интервале t < 1.5 нс. Таким об-
разом, для описания временной эволюции этих
компонент конденсата благодаря большому вре-
мени спиновой релаксации, τs ≈ 10 нс, можно в
первом приближении использовать двухмодовую
модель.

В ДПЛ № 2 пренебрежение взаимовлиянием
внутреннего и внешнего эффектов Джозефсона
невозможно. В ней отсутствует направление ли-
нейной поляризации накачки, в котором интен-
сивность излучения поляритонов в ортогональ-
ной поляризации остается малой. На рис. 2г и 2д
видно, что в ДПЛ № 2 NLR(t) ≈ Ixx,LR(t) + Ixy,LR(t),
как и в ДПЛ № 1, затухает экспоненциально с
τLP ≈ 200 пс, однако поляризационные эффек-
ты в динамике конденсата на порядок сильнее:
при t < 130 пс Ixx,LR уменьшается сверхэкспо-
ненциально с увеличением t, а Ixy,LR сильно воз-
растает. При t ≈ 130 пс они сравниваются и далее
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затухают, осциллируя c периодом ≈430 пс в про-
тивофазе, с относительно слабыми осцилляция-
ми из-за межловушечного перетекания плотно-
сти конденсата.

Периоды межловушечных осцилляций πx и πy
компонент конденсата при накачке в этих поля-
ризациях, равны Tx = 37.8±1 пс и Ty = 41.1 ± 1 пс.
Они близки к рассчитанным из измеренных
спектральных расщеплений S и AS мод с поляри-
зациями, близкими к осям Ox и Oy, соответствен-
но: Tx = h/∆x = 38.1±3 пс и Ty = h/∆y = 40.7±3 пс.
Подчеркнем, что эффекты, обусловленные тун-
нельным и спиновым взаимодействиями, в ДПЛ
№ 2 хорошо разделяются благодаря большой раз-
нице в их величинах: расщепления S и AS мод
≈100 мкэВ, а их спиновые расщепления меньше
12 мкэВ. На рис. 4б видно, что при возбуждении
πx импульсами, модуляция осцилляций ρl

x,LR(t)
и ρld

x,LR(t) в ловушках с периодом ≈430 пс из-за
спинового расщепления практически синфазна с
осцилляциями интенсивностей излучения в них
из-за туннелирования. Как следствие, в излуче-
нии конденсата из ДПЛ они почти компенсиру-
ют друг друга (рис. 2г и 2д).
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Рис. 3. Измеренные (а) и рассчитанные (б) в рамках
четырехмодовой модели временные зависимости сте-
пеней линейной поляризации ρl

i,LR излучения поля-
ритонного конденсата и видности его межловушеч-
ных осцилляций ZLR,i при πi поляризованной накачке
(i = x для πx и y для πy) для ДПЛ № 1.

Набор измеренных ρl
i,LR(t) и ρld

i,LR(t) конденсата
из ДПЛ № 2 показан на рис. 4б и 4в. На рисунке
видно, что в области t ≳ 100 пс при накачке πx
импульсами (i = x) они осциллируют в противо-
фазе с периодом Tx ≈ 425 пс от 0 до ≈0.75 и от 0
до ≈0.8, а при возбуждении πy импульсами (i = y)
с периодом Ty ≈ 450 пс от −0.2 до ≈ 0.75 и от −0.3
до ≈0.6, соответственно, с небольшой модуляци-
ей с периодами 38 пс (для πx) и 41 пс (для πy), обу-
словленной осцилляциями плотности конденса-
та между ловушками в ДПЛ. Пунктирные кривые
на рис. 4б и 4в показывают аппроксимацию ос-
цилляций ρl

i,LR и ρld
i,LR одной гармоникой:

ρi,LR = Ai cos
(︀
(2πt + ϕl

i)/Tij
)︀
×

× exp(−(t + ϕl
i)/τs) + Bi

(2)

ρ
ld
i,LR = Ci sin

(︀
(2πt + ϕld

i )/Tij
)︀
×

× exp(−(t + ϕl
i)/τs) + Di

(3)

с Txy = 425 пс, τs = 10 нс и начальными фазами
ϕl

x = 0.3π и −0.35π для ρl
x,LR и ρld

x,LR(∆ϕl
x = 0.65π) и

с Tyx = 453 пс и начальными фазами ϕld
y = −0.05π

и −0.7π для ρl
y,LR и ρld

y,LR(∆ϕl
y = −0.65π), соответ-

ственно. На рис. 4б и 4в видно, что при таких па-
раметрах ρl

i,LR(t) и ρld
i,LR(t) хорошо описываются во

всем диапазоне t за исключением области малых
времен ≲ 70 пс.

Динамика поляритонов
в рамках четырехмодовой модели

Для анализа временной эволюции поляризо-
ванных спектров излучения ДПЛ было использо-
вано динамическое уравнение Шредингера с уче-
том конечного времени жизни поляритонов:

iℏ
∂Ψ

∂t
= (Ĥc − iγÎ)Ψ. (4)

При использованных в эксперименте плотно-
стях возбуждения изменение ELP в затухающем
конденсате, характеризующее величину межча-
стичного взаимодействия, не превышало 5%,
поэтому для расчетов использовалось линейное
приближение гамильтониана (1). С целью умень-
шения подгоночных параметров мы пренебрега-
ем небольшой по сравнению с величиной тун-
нельного взаимодействия разностью энергий по-
ляритонных уровней EL и ER в ловушках и кроме
того, принимая во внимание, что ловушки в ДПЛ
расположены вдоль направления [110] и слегка
вытянуты вдоль него, почти сохраняя плоскость
симметрии σh(zy), ограничиваемся учетом нару-
шения этой симметрии только в одной ловушке.

С учетом сделанных выше допущений гамиль-
тониан (1), написанный в циркулярном бази-
се для левой (L) и правой (R) ловушек, мож-
но записать в линейно-поляризованном базисе
в матричном виде в базисе четырех состояний
{|L,πx⟩, |L,πy⟩, |R,πx⟩, |R,πy⟩} в следующем виде
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Ĥl =

⎛⎜⎝ DL cosφL DL sinφL J +G cosΦ G sinΦ
DL sinφL −DL cosφL G sinΦ J −G cosΦ

J +G cosΦ G sinΦ DR 0
G sinΦ J −G cosΦ 0 −DR

⎞⎟⎠ . (5)

Здесь DL и DR – межспиновые взаимодействия
в ловушках L и R, а фазы φL и φR имеют смысл
отсчитываемых от оси ДПЛ (Ox) углов поворота
φL/2 и φR/2 собственных базисов линейных по-
ляризаций в них, базис главных линейных осей
правой ямы совпадает с осями ДПЛ (Ox и 0у),
φR/2 = 0. Параметры DL, DR, J, G, φL и Φ оста-
ются подгоночными. ДПЛ имеет два симметрич-
ных (S) и два асимметричных (AS) по ловушкам
поляритонных уровня с ортогональными линей-
ными поляризациями, направления которых в S
и AS модах при нарушении симметрии С2 не сов-
падают с осями ДПЛ.

Результаты аппроксимации динамики поляри-
тонов в ДПЛ № 1 при накачке пикосекундными
πx импульсами показаны на рис. 2в и 3б. На ри-
сунках видно, что для набора относительных па-
раметров DL = DR = 0.17; φL/2 = 2.7∘; J = 0.445;
G = 0.025; Φ = 2.1∘; γ = 0.017 наблюдается хоро-
шее согласие с экспериментом. При πx накачке
интенсивность излучения поляритонной компо-
ненты с ортогональной поляризацией (πy) с кон-
центрацией, на порядок меньшей, чем в основ-
ной, демонстрирует сильные осцилляции вслед-
ствие туннелирования между ловушками с пери-
одом Ty = 45 пс, и межспинового взаимодействия
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Рис. 4. Измеренные (а–в) и рассчитанные с использованием четырехмодовой модели (г–е) временные зависи-
мости степеней линейной ρl

i,LR и диагональной линейной ρld
i,LR поляризаций излучения поляритонного конден-

сата и видности его межловушечных осцилляций ZLR,i при πi поляризованной накачке (i = x, y) для ДПЛ № 2.
Пунктирные кривые на графиках б и в показывают аппроксимации осцилляций ρl

i,LR и ρld
i,LR одной гармоникой

с использованием формул (2) и (3).
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с периодом Txy = 115 пс. Различие спиновых рас-
щеплений S и AS мод ведет к нарушению гармо-
ничности осцилляций (рис. 2в). Величины ρl

i,LR
(i = x, y) меняются в интервале между 0.85 и 0.95
(рис. 3б) в согласии с экспериментом.

Результаты аппроксимации поляризационной
динамики поляритонов в ДПЛ № 2 при возбуж-
дении πx и πy поляризованными пикосекунд-
ными импульсам показаны на рис. 2е и 4г–4е
при следующих параметрах: DL = DR = 0.053;
φL/2 = 31.7∘; J = 0.465; G = 0.015; Φ = 5.2∘;
γ = 0.017. На рис. 2е видно, что при таких па-
раметрах в ДПЛ № 2 качественно описываются
осцилляции поляритонного конденсата между L
и R ловушками с периодом Tx = 38 пс, видности
этих осцилляций ZLR,x и осцилляции степеней
линейной поляризации, ρl

i,LR и ρld
i,LR, с периодом

Txy = 430 пс (рис. 4г–4е), а также поляриза-
ционная конверсия конденсата поляритонов:
πy компонента, Ixy,LR(t), в ДПЛ периодически
(c Txy = 430 пс) практически сравнивается с πx

компонентой, Ix,LR(t). Величина ρl
i,LR изменяется

от значений < 0.1 до ≈0.9 при i = x, y (рис. 4д
и 4е), в области минимумов ρl

i,LR степень ρld
i,LR

достигает максимумов до 0.85 (рис. 4д и 4е),
т.е. с периодом Txy поляризация спинорного
конденсата в ДПЛ осциллирует между линей-
ной и линейной диагональной. В то же время
на рис. 4 видно, что эта модель не описывает
наблюдаемые в эксперименте отличия первых
полупериодов Ti,1/2 в ρl

i,LR(t) и ρld
i,LR(t) от Ti/2

(i = x, y) следующих осцилляций при накачке
импульсами и с πx и с πy поляризацией, а также
появления большой разности фаз ∆ϕl

x = 0.65π и
∆ϕl

y = −0.65π у осцилляций в ρl
i,LR(t) и ρld

i,LR(t).

К существенному отличию динамики поля-
ризации излучения спинорного газа поляри-
тонов из области ДПЛ от предсказанной в
рамках четырехмодовой модели на временах
t ≲ 70 пс может приводить излучение полярито-
нов, возбужденных выше дна поляритонной зо-
ны, поскольку глубина залегания уровней в ДПЛ
−0.1 ÷ −0.2 мэВ существенно меньше спектраль-
ной ширины 1.1 мэВ накачивающих лазерных
импульсов с длительностью ≈2 пс. Из анализа
время-разрешенных спектров излучения следует,
что доля таких поляритонов, возбужденных в об-
ласти ДПЛ, лежит в пределах 8%, а их концентра-
ция убывает после окончания импульса со време-
нем tband ≈ 35 пс вследствие разбегания за преде-
лы ловушек и локализации в ловушках. Поляри-
зация фотовозбужденных свободных полярито-
нов не совпадает с поляризацией поляритонных
мод в ДПЛ. Поэтому естественно ожидать, что
их распределение по уровням при локализации в
ДПЛ будет отличным от реализуемого накачива-
ющим импульсом и должно приводить к сдвигу

фаз интерферирующих мод конденсата, наблю-
даемому в эксперименте.

В пользу этого предположения, в частности,
свидетельствуют наблюдаемые на рис. 4а–4в
уменьшения в течение первого периода осцилля-
ций амплитуд видностей Z LR,x и Z LR,y, почти на
20% и амплитуд степеней поляризации ρl

x,LR(t) и

ρl
y,LR(t) на 10% при сохранении их в дальнейшем.

На рис. 4б и 4в также видно, что отклонение зави-
симостей ρl

x,LR(t) и ρl
y,LR(t) от гармонических за-

канчиваются при t ≈ 70 пс.
На основании выше сказанного можно сделать

вывод, что отличие измеренной динамики поля-
ризации излучения спинорного газа полярито-
нов из области ДПЛ при t ≲ 70 пс от предсказан-
ной в рамках четырехмодовой модели обусловле-
но дополнительным вкладом от излучения воз-
буждаемых в области ДПЛ спектрально широки-
ми пикосекундными импульсами свободных по-
ляритонов и, кроме того, возмущением ими при
локализации модового состава ДПЛ.

ЗАКЛЮЧЕНИЕ

Таким образом, нами было исследовано взаи-
мовлияние туннельного взаимодействия и ани-
зотропии потенциала двойных ловушек на ди-
намику поляризации спинорного поляритонно-
го конденсата с большим, ≈200 пс, временем
жизни в GaAs/AlAs МР с (InGa)As квантовыми
ямами при T = 2 К в условиях резонансной
накачки пикосекундными лазерными импульса-
ми. Найдено, что время спиновой релаксации в
поляритонном конденсате в ДПЛ достигает 10
нс. Было показано, что в ДПЛ с симметрией,
близкой к С2, возбуждаемой импульсами, поля-
ризованными вдоль и перпендикулярно ее оси,
влияние внутреннего эффекта Джозефсона мало,
поэтому, в первом приближении, для описания
динамики доминирующей спиновой компонен-
ты конденсата можно использовать двухмодовую
модель. В ДПЛ с сильно нарушенной симметри-
ей С2 пренебрежение взаимовлиянием внутрен-
него и внешнего эффектов Джозефсона в кон-
денсате становится невозможным и для описа-
ния его поляризационной динамики необходи-
мо использовать четырехмодовую модель. Най-
дено, что при возбуждении ДПЛ пикосекундны-
ми импульсами со спектральной шириной, боль-
шей глубины залегания поляритонных уровней в
ней, при описании временной эволюции поля-
ризованных спектров излучения из области ДПЛ
необходимо также учитывать вклад от излучения
свободных поляритонов, возбужденных в ее об-
ласти, а также возмущение модового состава кон-
денсата вследствие их локализации в ДПЛ.

Исследование выполнено за счет гранта Рос-
сийского научного фонда № 24-12-00411.
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Dynamics of spinor exciton-polariton condensates in double potential traps

in a GaAs/AlAs microcavity under resonant picosecond excitation

A. A. Demeneva,*, S. N. Tereshkoa, N. A. Gippiusb, V. D. Kulakovskiia

aOsipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
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The temporal evolution of the polarized emission spectra of spinor exciton-polariton condensates in double
tunnel-coupled potential traps in a high-Q GaAs/AlAs microcavity at 2 K under resonant laser pumping
with picosecond pulses has been studied in the time range up to 1.5 ns. An estimate of the spin relaxation
time of the condensate τs ∼ 10 ns is obtained. The influence of the symmetry of the trap potential on the
energy spectrum of the polariton modes and on the polarization dynamics of the spinor condensate in the
tunnel-coupled potential traps is discussed.

Keywords: microcavity, exciton-polariton, spinor polariton condensate, bosonic Josephson junction, time-
resolved spectroscopy.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 89 № 2 2025


