
ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ, 2025, том 89, № 2, с. 294–298

УДК 537.621.4:537.622.4

КОМБИНАЦИОННОЕ РАССЕЯНИЕ СВЕТА
В ФЕРРОМАГНИТНЫХ НАНОПРОВОЛОКАХ Ge1−xCox

C 2025 г. С. В. Зайцев1,*, А. И. Дмитриев2

1Федеральное государственное бюджетное учреждение науки Институт физики твердого тела
имени Ю.А. Осипьяна Российской академии наук, Черноголовка, Россия

2Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр проблем
химической физики и медицинской химии Российской академии наук», Черноголовка, Россия

*E-mail: szaitsev@issp.ac.ru

Поступила в редакцию 27.09.2024 г.
После доработки 18.10.2024 г.

Принята к публикации 28.10.2024 г.

Обнаружена корреляция температурных зависимостей комбинационного рассеяния света и
ферромагнитного резонанса в нанопроволоках разбавленного магнитного полупроводника
Ge0.99Co0.01. Так, с ростом температуры происходит резкий красный сдвиг («смягчение») линий
оптических фононов при T ≈ 74 K. Наблюдаемое поведение свидетельствует о сильном взаимо-
действии носителей не только с фононами, но и с магнитной системой.
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ВВЕДЕНИЕ

Ферромагнитные полупроводники (ФМП)
представляют огромный интерес как с фунда-
ментальной, так и с прикладной точек зрения [1].
Наиболее изученные ФМП, такие как InMnAs
GaMnAs, имеют существенное ограничение по
температуре Кюри TC < 173 K [2], что значи-
тельно ниже комнатной температуры. Позже
было установлено, что в соединениях германия
Ge1−xMex, (x ≤ 6%), легированном примеся-
ми переходных металлов Me (Co, Mn, Cr, Fe),
ферромагнетизм (ФМ) наблюдается вплоть до
комнатных температур и выше [3]. В пленках
Si1−xMnx с составом x ≈ 0.35 также был обна-
ружен ФМ при комнатной температуре [4].
Поскольку кремниевые и германиевые ФМП
непосредственно совместимы с современной
полупроводниковой технологией, эти соедине-
ния также представляют огромный интерес для
индустриальных применений [5]. В настоящее
время продолжаются активные исследования
полупроводниковых структур на основе разбав-
ленных ФМП группы IV [1, 5]. Ферромагнетизм в
ориентированных нанопроволоках (НП) диамет-
ром 35–60 нм на основе соединений германия
Ge1−xMnx наблюдается вплоть до комнатной тем-
пературы [3], что делает НП очень интересным
объектом для возможных применений в нанооп-
тике и наноэлектронике. Ориентированные НП

представляют собой мезоскопический объект [6],
в котором размеры в поперечном направлении
(по диаметру НП) сравнимы или меньше ха-
рактерных. масштабов: глубины скин-слоя,
корреляционной магнитной длины и др. Это
дает возможность получить фундаментальную
информацию о природе магнетизма и отработать
принципиально новые подходы к оптимизации
магнитных свойств разбавленных магнитных
полупроводников. В работе [7] было найдено,
что в НП Ge1−xCox подвижные носители заряда
(дырки) взаимодействуют с ФМ кластерами Co,
имеющими температуру Кюри TC ≈ 25 K. В то
же время известно, что рамановски-активные
LO-фононы активно взаимодействуют со сво-
бодными носителями заряда, предположительно
участвующими в косвенном ФМ обмене между
спинами магнитных ионов [1]. Поэтому целью
настоящей работы было исследование взаимного
влияния магнитных подсистем (кластеров Co
и твердого раствора Ge1−xCox) с носителями
заряда в НП Ge0.99Mn0.01 методами спектроско-
пии комбинационного рассеяния света (КРС) и
ферромагнитного резонанса (ФМР).

МЕТОДИКА ЭКСПЕРИМЕНТА

Нанопроволоки Ge1−xCox (x = 1–3%) синте-
зированы внутри пор в мембранах анодирован-
ного оксида алюминия (ААО) методом сверхкри-
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Рис. 1. Спектры комбинационного рассеяния света
в нанопроволоках Ge0.99Co0.01. Спектры сдвинуты по
вертикали. Для сравнения приведен спектр нелегиро-
ванного кристаллического германия при T = 7 К.

тической жидкости [7]. Мембраны имели толщи-
ну 60 мкм с порами диаметром 60 нм и средним
расстоянием между ними ≈ 200 нм (рис. 1). Син-
тез нанопроволок (НП) проводился при 600∘С
и давлении 37.5 MPa в сверхкритическом со-
стоянии CO2 в процессе распада октакарбо-
нила дикобальта Co2(CO)8 и дифенилгермани-
та Ph2GeH2. Структурные и химические харак-
теристики полученных нанопроволок определя-
ли с помощью электронного просвечивающего
микроскопа, рентгеновской дифракции и рент-
геновской фотоэлектронной спектроскопии [7].
Концентрация кобальта в нанопроволоках бы-
ла установлена методом рентгеновской флуорес-
ценции. Результаты проведенных анализов поз-
волили установить, что нанопроволоки состо-
ят из поликристаллического германия. Атомы
кобальта в НП распределяются неравномерно,
образуя нанокластеры в объеме нанопроволок,
что существенно влияет на их магнитные свой-
ства [7]. Средняя плотность нанопроволок в мем-
бране составляет 1.5 · 108 см–2, что соответствует
среднему расстоянию между ними ≈ 300 нм.

Спектры магнитного резонанса были получе-
ны на спектрометре Х-диапазона Bruker ESR-
300 при температурах T = 4–140 К в криоста-
те Oxford Instruments с регулируемой температу-
рой [7]. Точность регулировки температуры луч-
ше 0.3 К. Образец помещался в пучность магнит-
ной составляющей микроволнового поля. Изме-
ряемый сигнал магнитного резонанса был про-
порционален первой производной мнимой ча-
сти магнитной восприимчивости dχ/dH. Также в
процессе измерений контролировалась доброт-
ность резонатора. Мощность СВЧ-излучения в
резонаторе составляла 6 ·10−4 Вт, частота модуля-
ции 100 кГц. Рамановская спектроскопия образ-
ца НП проведена в проточном гелиевом криоста-
те с регулируемой температурой (T ≥ 7 К). Спек-
тры комбинационного рассеяния света (КРС) из-

мерялись в геометрии обратного рассеяния на
установке, состоящей из спектрометра МДР-12
с голографической решеткой 2400 штрихов/мм
и CCD-детектора Roper Instrument, охлаждаемо-
го жидким азотом. Для возбуждения КРС ис-
пользовался непрерывный твердотельный лазер
λ = 532 нм с диодной накачкой. Лазерный пу-
чок фокусировался на образец при помощи объ-
ектива Olympus 10× в пятно диаметром ≈20 мкм.
Линия излучения лазера в рассеянном пучке
подавлялась с помощью краевого фильтра для
λ = 532 нм с оптической плотностью OD = 6
и сдвигом полосы пропускания ≈ 250 см–1. Раз-
решение установки ≈ 1 см–1. Интенсивность ла-
зерного возбуждения непосредственно перед об-
разцом составляла ≈ 1 мВт.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
На рис. 1 приведены температурные зависимо-

сти спектров комбинационного рассеяния света
(КРС) в нанопроволоках Ge0.99Co0.01. Для срав-
нения приведен также спектр чистого (неле-
гированного) кристаллического германия при
T = 7 К. Видно, что при введении примеси Co в
германий вместо одиночной линии рамановски-
активного LO-фонона германия ≈ 310 см–1 воз-
никают две линии фононов при ≈ 280 см–1 и
≈ 334 см–1, которые существенно уширены по
сравнению со спектром кристаллического герма-
ния. Отметим, что к наблюдаемому расщепле-
нию линии LO-фонона чистого германия могут
приводить эффекты фононного конфайнмента и
деформация при сжатии [8]. Кроме того, как от-
мечалось выше, исследуемые НП Ge0.97Co0.03 со-
держат нанокластеры Co [7], что свидетельству-
ет об их сложной структуре. В то же время на-
личие нанокластеров оксида кобальта (CoO или
Co3O4) в НП исключается. Например, в окси-
де кобальта CoO при криогенных температурах
наблюдались три узкие линии при ≈ 140 см–1,
≈ 220 см–1 и ≈ 296 см–1 [9], которые были от-
несены к магнитным возбуждениям. Также в ра-
боте [10] сообщалось о наличии уширенной ли-
нии при ≈ 285 см–1, появление которой были
отнесено к аморфным кластерам германия. Бо-
лее детальная информация о причинах такого
нетипичного расщепления требует дополнитель-
ных детальных исследований НП методом элек-
тронной микроскопии высокого разрешения. Та-
ким образом, каждая линия спектра КРС имеет
слабое по интенсивности низкоэнергетическое
плечо (ниже на ≈ 10–12 см–1), что характерно
для включений аморфного германия [10]. Обе
линии с хорошей точностью подгоняются дву-
мя гауссианами, соответствующими аморфной
и кристаллической компонентам. Малая доля
низкоэнергетической компоненты, менее 15%,
свидетельствует о высоком кристаллическом ка-
честве нанопроволок. Полученная зависимость
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Рис. 2. Температурная зависимость рамановских LO-
фононов в нанопроволоках Ge0.99Co0.01 на рис. 1.
Ошибка подгонки положения линий меньше 0.4 см–1

(размер символа) при полуширине линий ≈ 7 см–1.
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Рис. 3. Температурная зависимость χ(T ) · T – произ-
ведения магнитной восприимчивости на температуру
для линии F 1 спектра ФМР. Величина χ(T ) · T нор-
мирована на ее значение при T = 140 K. Стрелками
отмечены особенности при температурах T1 и T2 (см.
текст). На вставке – спектр ФМР при ориентации по-
стоянного магнитного поля спектрометра вдоль осей
нанопроволок и T = 25 K.

положения центра тяжести обеих линий пока-
зана на рис. 2. Видно, что после слабого моно-
тонного изменения с ростом температуры (ме-
нее 1 см–1) происходит их существенный резкий
красный сдвиг (более 3 см–1 для моды 334 см–1)
при T0 ≈ 74 K.

Наблюдаемое аномальное температурное по-
ведение фононной подсистемы – «смягчение»
(уменьшение) частоты LO-фонона в Ge0.99Co0.01
коррелирует с результатами исследования в них
ферромагнитного резонанса (ФМР). На рис. 3
приведены температурная зависимость χ(T ) · T –
произведения магнитной восприимчивости на
температуру для линии F 1 спектра ФМР, по-
лученного путем двукратного интегрирования
спектра линии F 1 [7], а сам спектр ФМР при

T = 25 K – на вставке к рисунку. В интервале тем-
ператур T = 8–23 K спектр имеет четыре линии
F 1–F 4 [7], а выше 23 K линия F 1 резко увели-
чивается по амплитуде и ширине по сравнению с
линиями F 2–F 4, так что при более высоких тем-
пературах эти линии (F 2, F 3 и F 4) практически
не видны (см. вставку на рис. 3). На то, что ли-
ния F 1 отвечает именно ФМР, указывают ее боль-
шая ширина, много больше ширины линий, ха-
рактерных для парамагнитного резонанса, ее g-
фактор, много меньший величины g = 2, харак-
терной для парамагнитного резонанса, и специ-
фическая форма линии. Две другие линии соот-
ветствуют магнитному резонансу на оборванных
связях (дефектах) в германии, которые образова-
лись, по-видимому, при легировании кобальтом,
а четвертая линия характерна для носителей за-
ряда – дырок в системе Ge:Co [1, 11].

Резкое изменение вида спектра при T1 ≈ 25 K
и параметров линии F 1 (рост ее ширины и зна-
чения резонансного поля c температурой) свиде-
тельствует о том, что при этой температуре в на-
нопроволоках происходит изменение магнитно-
го состояния, которое в работе [7] объяснялось
магнитным переходом в подсистеме нанокласте-
ров Co, присутствующих в нанопроволоках. Тем-
пература T1 соответствует температуре Кюри кла-
стеров Co TC ≈ 25 K, содержащихся в нанопро-
волоках. Об этом свидетельствует также особен-
ность при T1 (отмечено стрелкой на рис. 3) на
температурной зависимости произведения χ(T )·T
для линии F 1 в спектре ФМР. Интересно, что
температуре T2 ≈ 74 K, при которой наблюдает-
ся максимум зависимости χ(T ) · T , соответствует
резкое уменьшение частот обоих LO-фононов на
их температурной зависимости (рис. 3).

Для понимания такого синфазного поведения
магнитной и фононной систем: корреляции тем-
пературных зависимостей χ(T ) · T , частот LO-
фононов и их возможной связи, обратимся к ре-
зультатам детальных исследований нанопрово-
лок Ge1−xCox в работе [7]. В этой работе из ана-
лиза поведения линии F 1 для ФМР-резонанса
следует, что магнетизм образцов нанопроволок
не сводится к магнетизму только нанокластеров
Co. Также в [7] было найдено, что значения по-
стоянной анизотропии и времен спиновой ре-
лаксации существенно отличаются от соответ-
ствующих значений для кластеров чистого ко-
бальта, поэтому необходимо учитывать вклад в
магнитные свойства образцов также кластеров
GeCo, которые присутствуют в нанопроволоках,
согласно данным электронной микроскопии [7].
Не исключено, что определенный вклад в маг-
нитные свойства твердого раствора Ge1−xCox мо-
гут вносить диспергированные ионы Co, связан-
ные косвенным обменным взаимодействием че-
рез носители (дырки). Однако выделение вклада
этого дальнодействующего механизма на основа-
нии полученных данных пока не представляет-
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ся возможным. В этой связи необходимо отме-
тить, что магнитные свойства твердого раствора
Ge1−xCox очень чувствительны к методу приго-
товления образцов. Так, например, выращенные
методом низкотемпературной эпитаксии тонкие
пленки Co0.02Ge0.98 имеют p-тип проводимости
и температуру Кюри TC ≈ 15 K, а после отжи-
га они проявляют ферромагнетизм при более вы-
соких температурах, вплоть до TC ≈ 150 K [11].
В работе [12] были выполнены измерения маг-
нитные измерения восприимчивости германия
p-типа и было показано, что дырки вносят су-
щественный вклад в его магнитные свойства,
однако температурная зависимость отвечающе-
го дыркам магнитного момента была монотон-
на, в отличие от полученного нами результата
(рис. 3). Поскольку величина χ(T ) · T имеет фи-
зический смысл эффективного числа спинов в
магнитной системе [13], ее немонотонное пове-
дение – максимум на температурной зависимо-
сти при T0 ≈ 74 K означает, что в исследуе-
мых нанопроволоках происходит магнитный фа-
зовый переход, который оказывает воздействие и
на подсистему подвижных носителей заряда (ды-
рок), аналогично легированным марганцем на-
нопроволокам Ge1−xMnx [14]. В силу того, что
рамановски-активные LO-фононы сильно взаи-
модействуют со свободными носителями заряда,
предположительно участвующими в косвенном
ФМ обмене между спинами магнитных ионов
[1, 15], корреляция температурных зависимостей
частот LO-фононов (рис. 2) и величины χ(T ) · T
(рис. 3) указывает на взаимодействие дырок так-
же с ФМ кластерами сплавов (твердого раствора)
Ge1−xCox. Таким образом, хоть прямые электри-
ческие измерения в нанопроволоках Ge1−xCox
невозможны, комплексное совместное изучение
магнитного резонанса и комбинационного рас-
сеяния света подтверждают существенный вклад
носителей (дырок) в их магнитные свойства.

ЗАКЛЮЧЕНИЕ

Таким образом, нами были изучены темпера-
турные зависимости комбинационного рассея-
ния света и ферромагнитного резонанса в нано-
проволоках разбавленного ферромагнитного по-
лупроводника Ge0.99Co0.01. Обнаружено, что с
ростом температуры происходит резкий красный

сдвиг («смягчение») линий оптических фононов
при T ≈ 74 K. Наблюдаемое поведение корре-
лирует с максимумом на температурной зависи-
мости произведения магнитной восприимчиво-
сти χ(T )·T для линии ферромагнитного резонанса
и свидетельствует о сильном взаимодействии но-
сителей не только с фононами, но и с магнитной
системой.

Работа выполнена в рамках тем государствен-
ного задания Института физики твердого тела
имени Ю.А. Осипьяна РАН и ФИЦ проблем хи-
мической физики и медицинской химии РАН
(124013100858-3).
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Raman scattering in ferromagnetic Ge1−xCox nanowires
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Correlation of the temperature dependencies of Raman scattering and ferromagnetic resonance is found
in nanowires of a dilute magnetic semiconductor Ge0.99Co0.01. A sudden softening of the optical phonons
lines occurs at T ≈ 74 K. The observed behavior indicates a strong interaction of carriers not only with
phonons, but also with the magnetic system.
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