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ВВЕДЕНИЕ

Поверхностные периодические течения встре-
чаются повсеместно в природных явлениях, а их
параметры изменяются в широком диапазоне.
Например, период наблюдаемых возмущений
свободной поверхности воды может принимать
значения от 10–4 с в капиллярных течениях, воз-
никающих в процессе импакта капли [1] до 24 ч
в приливных периодических движениях [2]. Пе-
риодические возмущения поверхности жидкой
среды наблюдаются и в микромасштабах, напри-
мер в процессах микроэлектроники и в космиче-
ских масштабах, например на поверхности звезд.
Исследователи обращают внимание на различ-
ные аспекты периодических поверхностных воз-
мущений и проводят как теоретические анали-
тические и численные, так и экспериментальные
исследования [3–7]. При этом рассматриваются
модели линейных и нелинейных волн. Отдель-
ный интерес исследования представляют в кон-
тексте влияния на климат, мировой океан и атмо-
сферу [8–9]. Однако, подавляющее большинство
авторов не обращает внимания на сопутствую-
щую крупномасштабным волновым процессам
тонкую структуру, сопровождающую все волно-
вые процессы. В океане на наличие тонкой струк-
туры обращалось внимание в [10]. В [11, 12] ис-
следованы дисперсионные характеристики круп-

номасштабных и сопутствующих тонкоструктур-
ных компонентов поверхностных течений в раз-
личных постановках. Настоящая работа посвя-
щена подробному описанию методики получе-
ния полных решений, содержащих регулярные
и сингулярные компоненты, а также исследова-
нию влияния регулярных и сингулярных компо-
нентов на распределение физических величин, в
частности плотности и градиента плотности при
распространении возмущения малой амплиту-
ды вдоль свободной поверхности вязкой несжи-
маемой экспоненциально стратифицированной
жидкости.

МАТЕМАТИЧЕСКАЯ ФОРМУЛИРОВКА
ЗАДАЧИ

Задача рассматривается в двумерной постанов-
ке в декартовой системе координат Oxz. Гори-
зонтальная ось Ox расположена вдоль равновес-
ного положения свободной поверхности неогра-
ниченной жидкости, занимающей нижнее полу-
пространство z < 0. Вертикальная ось Oz на-
правлена против действия сил тяжести g⃗. Жид-
кость полагается несжимаемой, вязкой с кинема-
тической вязкостью ν и плотностью ρ. Рассмот-
рим периодическое возмущение ζ (x, t) поверхно-
сти, распространяющееся в положительном на-
правлении оси Ox с действительной положитель-
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но определенной частотой ω > 0, при этом ком-
поненты волнового вектора k⃗ = (kx, kz) распро-
страняющегося периодического возмущения мо-
гут быть комплексными. Коэффициент поверх-
ностного натяженияσ будем считать постоянным
и не зависящим от внешних параметров задачи.
В двумерной постановке в несжимаемой жидко-
сти поле вектора скорости u⃗ = (u,w) можно пред-
ставить в виде одной скалярной функции тока ψ:

u⃗ = (u,w) = (∂zψ,−∂xψ) . (1)

В сделанных упрощениях математическая
формулировка задачи состоит из уравнений
Навье–Стокса и уравнения неразрывности:

z < ζ : ρ
(︀
∂tu⃗ +

(︀
u⃗ · ∇

)︀
u⃗
)︀
= ρν∆u⃗ − ∇P + ρg⃗, (2)

∂tρ + u⃗ · ∇ρ = 0, (3)

div u⃗ = 0, (4)

P = P0 +

∫︁ ζ

z
gρ (x, ξ, t) dξ + P̃ (x, z, t). (5)

Здесь P0 – атмосферное давление, а P̃ (x, z, t) –
компонент давления, вызванный периодическим
движением. Вместо записи уравнения состоя-
ния выберем вид функции, определяющей стра-
тификацию. Для широкого класса задач мож-
но считать, что стратификация равномерна и
имеет экспоненциальный профиль, тогда рав-
новесное распределение плотности предстает в
виде ρ0 (z) = exp (−z/Λ). Масштаб стратификации

Λ =
⃒⃒
d ln ρ/dz

⃒⃒−1
связан с частотой плавучести

среды N =
√

g/Λ.
Уравнения движения дополняются физически

обоснованными граничными условиями на сво-
бодной поверхности:

z = ζ :

⎧⎨⎩
∂t (z − ζ) + u⃗ · ∇ (z − ζ) = 0,
τ⃗ ·

(︀(︀
n⃗ · ∇

)︀
u⃗
)︀
+ n⃗ ·

(︀(︀
τ · ∇

)︀
u⃗
)︀
= 0,

P − P0 − σ div n⃗ − 2ρνn⃗
(︀(︀

n⃗ · ∇
)︀

u⃗
)︀
= 0,

(6)

ρ = ρ00
(︀
ρ0 (z) + ρ̃ (x, z, t)

)︀
=

= ρ00

(︁
exp

(︁
−

z
Λ

)︁
+ ρ̃ (x, z, t)

)︁
,

n⃗ =
∇ (z − ζ)
|∇ (z − ζ)|

=
−∂xζe⃗x + e⃗z√︀

1 + (∂xζ)2
, τ⃗ =

e⃗x + ∂xζe⃗z√︀
1 + (∂xζ)2

.

Здесь ρ00 – равновесное значение плотности
на невозмущенной поверхности жидкости,
ρ̃ (x, z, t) – периодическая составляющая воз-
мущения плотности, n⃗, τ⃗ – векторы внешней
нормали и касательной к свободной поверхности
жидкости соответственно. Будем использовать
при решении настоящей задачи приближение
Буссинеска. В этом приближении плотность
принимается постоянной у малых слагаемых

и ее неоднородность учитывается только в
слагаемых, содержащих ускорение свободного
падения. Дополнительно будем рассматривать
инфинитезимальные возмущения, что позволяет
произвести процедуру снесения граничных
условий на равновесный уровень свободной
поверхности. С учетом (1) математическая фор-
мулировка задачи (2)–(6) в линейной постановке
записывается следующим образом:

z < 0 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ00g∂xζ + ρ00g
∫︁ ζ

z
∂xρ̃ (x, ξ, t) dξ+

+ρ00∂tzψ − ρ00ν∂z∆ψ + ∂xP̃ = 0,
−ρ00∂txψ + ρ00ν∂x∆ψ + ∂zP̃ = 0,

∂tρ̃ −
dρ0 (z)

dz
∂xψ = 0,

(7)

z = 0 :

⎧⎨⎩
P̃ + 2ρν∂zxψ + σ∂xxζ = 0,
∂tζ + ∂xψ = 0,
∂zzψ − ∂xxψ = 0.

В модели полубесконечной жидкости необхо-
димо добавить условие затухания поверхностно-
го движения с глубиной. В связи с этим иско-
мые функции следует искать в виде зависимости,
обеспечивающей убывание функции с глубиной
∝ exp (kzz). Вместо выбора начальных условий
воспользуемся стандартным методом – поиска
решения в виде заданной периодической функ-
ции вида ∝ A exp (ikxx − iωt).

МЕТОДИКА РЕШЕНИЯ ЗАДАЧИ
Совместное решение уравнений движения и

граничных условий приводит к дисперсионным
соотношениям, связывающим положительно
определенную частоту периодического воз-
мущения ω и компоненты волнового вектора
k⃗ = (kx, kz), которые могут быть комплексными.
Исключая функцию для давления из уравнений
движения (7) и производя подстановку функции
вида ∝ A exp (ikxx − iωt) exp (kzz) получим:

ω
(︀
k2

x − k2
z

)︀(︀
iνk2

x − iνk2
z + ω

)︀
− N2k2

x exp (−z/Λ)=0. (8)

Решая дисперсионное соотношение относитель-
но компоненты волнового вектора kz получим два
типа решения: регулярные решения kz и сингу-
лярные решения, для которых введено переобо-
значение kl:

kz=±

√︃
k2

x −
iω
2ν
−

(1− i)
√︀

4k2
xνωN2 exp (−z/Λ) − iω4

2
√

2νω
,

(9)

kl=±

√︃
k2

x −
iω
2ν
+

(1− i)
√︀

4k2
xνωN2 exp (−z/Λ) − iω4

2
√

2νω
.

(10)
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Увидеть, что решения kz и kl принципиаль-
но разные можно, если рассмотреть дисперси-
онное соотношение (8) в безразмерном виде.
В качестве параметров обезразмеривания удоб-
но выбрать собственные параметры задачи, кото-
рые характеризуют естественные масштабы сре-
ды [12]. В качестве временного масштаба обез-
размеривания выберем обратную частоту плаву-
чести τN = N−1, а в качестве пространственно-
го масштаба обезразмеривания – вязкий волно-
вой масштаб δgν

N = (νg)1/3N−1. В безразмерном ви-
де дисперсионное соотношение (8) и решения
(9)–(10) переписываются следующим образом:

iε
(︀
k2

*x − k2
*z

)︀2
ω* +

(︀
k2

*x − k2
*z

)︀
ω

2
*−

− k2
*x exp (−z/Λ) = 0, (11)

k*z=±

⎯⎸⎸⎷
k2

*x −
iω*
2ε
+

i
√︁

4iεk2
*x exp (−z/Λ) + ω3

*

2ε
√
ω*

, (12)

k*l=±

⎯⎸⎸⎷
k2

*x −
iω*
2ε
−

i
√︁

4iεk2
*x exp (−z/Λ) + ω3

*

2ε
√
ω*

. (13)

Здесь нижним индексом «*» обозначены соот-
ветствующие безразмерные величины. Параметр
ε = δνg

⧸︀
δ

gν
N = Nν1/3g−2/3, который естественным

образом определяется из отношений собствен-
ных масштабов среды – вязкого δνg = ν2/3g−1/3 и
вязкого волнового δgν

N , для широкого класса жид-
костей является малым. С учетом малости пара-
метра ε точные решения можно представить в ви-
де приближенных значений. Для этого рассмот-
рим выражение под квадратным корнем:

i
√︁

4iεk2
*x exp (−z/Λ) + ω3

*

2ε
√
ω*

. (14)

Разложим выражение (14) в ряд Тейлора вблизи
нуля по малому параметру ε:

i
√︁

4iεk2
*x exp (−z/Λ) + ω3

*

2ε
√
ω*

=
iω*
2ε
−

k2
*x

ω2
*

e−
z
Λ+

+
ik4

*xε

ω5
*

e−
2z
Λ +

2k6
*xε

2

ω8
*

e−
3z
Λ + O

(︀
ε

3)︀ . (15)

Подставляя разложение (15) в выражение для
корня kz (12) с точностью до слагаемых порядка
O
(︀
ε0
)︀

получим:

k*z ≈ ±

√︃
k2

*x −
iω*
2ε
+

iω*
2ε
−

k2
*x

ω2
*

exp (−z/Λ) =

= ±k*x

√︀
ω2
* − exp (−z/Λ)

ω*
. (16)

При подстановке разложения (15) в выражение
для корня kl (13) с точностью до слагаемых поряд-
ка O

(︀
ε−1/2

)︀
получим выражение:

k*l ≈ ±

√︃
k2

*x −
iω*
2ε
−

(︂
iω*
2ε
−

k2
*x

ω2
*

e−
z
Λ

)︂
≈

≈ ±
1 − i
√

2ε

√
ω*. (17)

Рассмотрим дисперсионное соотношение (11) с
позиции теории регулярных и сингулярных раз-
ложений [13]. Подставляя регулярное разложе-
ние по малому параметру ε

k*z = k0 + εk1 + ε
2k2 + . . . (18)

в дисперсионное соотношение (11) получим:

iε
(︁

k2
*x −

(︀
k0 + εk1 + ε

2k2 + . . .
)︀2
)︁2
ω*+

+
(︁

k2
*x −

(︀
k0 + εk1 + ε

2k2 + . . .
)︀2
)︁
ω

2
*−

−k2
*xe−

z
Λ = 0.

(19)

Решая последовательно уравнение (19) для ве-
личин разных порядков малости можно получить
регулярное решение уравнения (11) с любой за-
данной точностью по малому параметру ε. С точ-
ностью до слагаемых порядка O

(︀
ε0
)︀

получим вы-
ражение, совпадающее с приближенным значе-
нием корня kz (16). Таким образом, решение kz (9)
и (12) определяет регулярные компоненты ре-
шения дисперсионного соотношения (11). Дис-
персионное уравнение (11) является уравнени-
ем четвертого порядка относительно компонен-
та волнового вектора k*z, однако регулярные раз-
ложения позволяют получить только два корня.
Оставшиеся два корня находятся методами тео-
рии сингулярных разложений [13]. Введем обо-
значение k*l для различия решений, а разложе-
ние (18) заменим на разложение вида:

k*z = ε
−η

(︀
k0 + εk1 + ε

2k2 + . . .
)︀
. (20)

Подставляя главный член разложения (20) ε−ηk0 в
дисперсионное соотношение, получим выраже-
ние:

iε
(︀
k2

*x − ε
−2ηk2

0
)︀2
ω* +

(︀
k2

*x − ε
−2ηk2

0
)︀
ω

2
*−

− k2
*x exp (−z/Λ) = 0. (21)

Чтобы определить величину ηпоследовательно
попарно приравняем степени малого параметра ε
в различных слагаемых уравнения (11). В резуль-
тате возникают возможные варианты уравнений
и соответствующих им решений на η:

1 − 4η = −2η, 1 − 4η = 1 − 2η, 1 − 4η = 0,
1 − 2η = −2η, 1 − 2η = 0, −2η = 0, (22)
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η =
1
2
, η =

1
4
, η = 0. (23)

Из возможных решений (23) отбираются те ре-
шения, которые при подстановке в дисперсион-
ное соотношение (11) обеспечивают главную ве-
личину у слагаемого со старшей степенью k4

0. Ре-
шение η = 0 не рассматривается, так как этот
случай соответствует регулярному разложению и
был рассмотрен ранее. Решение η = 1/4 не выпол-
няет условия главной величины слагаемого, со-
держащего старшую степень. Всем условиям удо-
влетворяет решение η = 1/2 и сингулярное разло-
жение (20) принимает вид:

k*l = ε
−1/2k0 + ε

1/2k1 + ε
3/2k2 + . . . (24)

Подставляя (24) в (11) и последовательно решая
для слагаемых при разных степенях малого пара-
метра, можно получить сингулярные решения с
заданной точностью. С точностью до слагаемых
порядка O

(︀
ε−1/2

)︀
получим выражение, совпадаю-

щее с приближенным значением корня (17). По-
этому решения (10), (13) названы сингулярными
решениями и определяют сингулярный компо-
нент периодического течения.

У дисперсионного соотношения существует
два типа решений: регулярные и сингулярные.
Регулярные решения (9) при выполнении пре-
дельных переходов к идеальной жидкости ν→ 0
сводятся к известным выражениям для волн
в идеальной жидкости и определяют волновой
компонент периодических движений:

kz
ν→0
−−−→ ±kx

√︂
1 −

N2 exp (−z/Λ)
ω2 . (25)

Сингулярные решения при выполнении пре-
дельного перехода к идеальной жидкости исчеза-
ют. Сингулярные решения задают тонкую струк-
туру течения, которая определяется лигаментны-
ми компонентами периодического течения.

Выполняя предельные переходы к однородной
жидкости N → 0 получим для регулярных и син-
гулярных компонентов течения существенно бо-
лее простые выражения:

kz
N→0
−−−−→ ±kx, kl

N→0
−−−−→ ±

√︂
k2

x −
iω
ν
. (26)

Выражения (25)–(26) можно получить при помо-
щи непосредственного расчета дисперсионных
соотношений соответствующих моделей жидко-
стей.

РЕШЕНИЕ ЗАДАЧИ
При совместном решении уравнений движе-

ния с граничными условиями с учетом регуляр-
ных и сингулярных компонентов течения были

получены дисперсионные соотношения, описы-
вающие и крупномасштабную динамику течения
и его тонкую структуру [11, 12]. Однако до сих пор
не обращалось пристальное внимание исследо-
вателей на построение решений для физических
переменных с учетом тонкой структуры течения.
Выделим из выражений, описывающих физиче-
ские переменные, входящие в описание задачи
волновые и лигаментные компоненты. Для это-
го необходимо подставить вид решения в основ-
ные уравнения. Полученные слагаемые для иско-
мых функций легко группируются и выделяют-
ся лигаментные (пропорциональные ∝ exp (klz))
и волновые (пропорциональные ∝ exp (kzz)) ком-
поненты:

ζ = Z exp (ikxx − iωt) ,

ψ = exp (ikxx − iωt)
(︀
A exp (kzz) + B exp (klz)

)︀
,

ρ̃ = exp (ikxx − iωt)
(︀
G exp (kzz) + H exp (klz)

)︀
,

(27)

P̃ = exp (ikxx − iωt)
(︀
K + L exp (kzz) + M exp (klz)

)︀
.

Из кинематического граничного условия (7)
получим связь между амплитудами отклонения
свободной поверхности и компонентов:

A = Z
ω
(︀
k2

x + k2
l

)︀
kx

(︀
k2

l − k2
z

)︀ , B = −Z
ω
(︀
k2

x + k2
z

)︀
kx

(︀
k2

l − k2
z

)︀ . (28)

Амплитуды компонентов плотности связыва-
ются с амплитудой отклонения свободной по-
верхности через уравнение неразрывности, а ам-
плитуды для давления – через компоненты урав-
нения Навье–Стокса:

G = Z exp
(︁
−

z
Λ

)︁ k2
x + k2

l

Λ
(︀
k2

l − k2
z

)︀ ,
H = −Z exp

(︁
−

z
Λ

)︁ k2
x + k2

z

Λ
(︀
k2

l − k2
z

)︀ ,
K = −Z

gΛρ00
(︀
k2

x + kzkl (−1 + kzΛ + klΛ)
)︀

(kz + kl) (kzΛ − 1) (klΛ − 1)
,

L = −Z
gρ00

(︀
k2

x + k2
l

)︀
exp (−z/Λ)(︀

k2
z − k2

l

)︀
(kzΛ − 1)

−

−Z
ikzωρ00

(︀
k2

x + k2
l

)︀ (︀
νk2

z − νk2
x + iω

)︀
k2

x

(︀
k2

z − k2
l

)︀ ,

M = −Z
gρ00

(︀
k2

x + k2
z

)︀
exp (−z/Λ)(︀

k2
l − k2

z

)︀
(klΛ − 1)

−

−Z
iklωρ00

(︀
k2

x + k2
z

)︀ (︀
νk2

l − νk2
x + iω

)︀
k2

x

(︀
k2

l − k2
z

)︀ .

(29)

Рассмотрим влияние волновых и лигаментных
компонентов на распределение плотности и гра-
диентов плотности на примере волны с частотой
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Рис. 1. Профиль возмущения свободной поверхности.
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Рис. 2. Распределение волнового компонента плотности (а), нормированной на максимальное значение гори-
зонтальной компоненты плотности (б) и нормированной на максимальное значение вертикальной компонен-
ты плотности (в).

ω = 1 c−1 и амплитудой, составляющей 10 про-
центов от длины волны. Профиль возмущения
свободной поверхности изображен на рис. 1. На
рис. 2а изображено периодическое возмущение

волнового компонента плотности, а на рис. 2б и
рис. 2в – нормированное на свое максимальное
значение распределение горизонтальной и вер-
тикальной компоненты градиента плотности со-
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Рис. 3. Распределение лигаментного компонента плотности на участке от начала координат до 0.1 λ (а), от 0.1
λ до 0.2 λ (б), от 0.2 λ до 0.3 λ (в), от 0.3 λ до 0.4 λ (г), от 0.4 λ до 0.5 λ (д), от 0.5 λ до 0.6 λ (е), от 0.6 λ до 0.7 λ (ж),
от 0.7 λ до 0.8 λ (з), от 0.8 λ до 0.9 λ (и), от 0.9 λ до λ (к).
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Рис. 4. Распределение лигаментной составляющей горизонтальной компоненты плотности, нормированной на
свое максимальное значение на участке от начала координат до 0.1 λ (а), от 0.1 λ до 0.2 λ (б), от 0.2 λ до 0.3 λ (в),
от 0.3 λ до 0.4 λ (г), от 0.4 λ до 0.5 λ (д), от 0.5 λ до 0.6 λ (е), от 0.6 λ до 0.7 λ (ж), от 0.7 λ до 0.8 λ (з), от 0.8 λ
до 0.9 λ (и), от 0.9 λ до λ (к).
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ответственно. Лигаментные компоненты опреде-
ляют тонкую структуру и их построение, и рас-
четы необходимо выполнять с большим разре-
шением. На рис. 3а–3к построены возмущения
плотности лигаментного компонента на разных
участках длины волны. Построения выполнялись
с шагом 0.1 доля толщины лигамента [12] по
вертикальной и по горизонтальной координатам.
На рис. 4а–4к представлены рассчитанная с вы-
соким разрешением горизонтальная компонента
градиента лигаментной составляющей возмуще-
ния плотности, нормированная на свое макси-
мальное значение.

ЗАКЛЮЧЕНИЕ
Таким образом, нами предложено подроб-

ное описание методики получения регулярных
и сингулярных компонентов дисперсионных со-
отношений поверхностных периодических тече-
ний жидкости. На примере вязкой двумерной
экспоненциально стратифицированной несжи-
маемой жидкости получено описание волновых
(регулярных) и лигаментных (сингулярных) ком-
понентов течения физических переменных. Ли-
гаментные компоненты течения определяют тон-
коструктурные элементы и характеризуют на-
блюдающиеся в экспериментах распределения
физических величин. Расчеты показывают, что
сопутствующая тонкая структура лучше всего
должна наблюдаться вблизи середины среза и
фронта поверхностной волны.

Работа выполнена в лаборатории меха-
ники жидкостей по теме государственного

задания ИПМех РАН им. А.Ю. Ишлинского
№ 124012500442-3.
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Waves and fine structures of physical variables in a viscous stratified liquid
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The surface perturbation in a viscous, stratified liquid is investigated in a two-dimensional setting.
Expressions for the dynamics of periodic surface motion and the fine-scale structure of currents are derived.
Distributions of the wave and ligament components of the density, density gradients, and pressure are
constructed. A fine structure accompanying the wave component of the flow is identified in physically
measurable variables.
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