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В работе Эйлера Principia motus fluidorum уравнение неразрывности для жидкости выведено с ис-
пользованием членов высокого порядка малости, содержащих квадратичный и кубичный инвари-
анты тензора скоростей деформаций. Из системы уравнений электродинамики Максвелла выво-
дится волновое уравнение для напряженности электрического поля с учетом квадратичного и ку-
бичного инвариантов, которые описывают генерацию волн напряженности электрического поля.
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ВВЕДЕНИЕ
Л.И. Седов в курсе «Механика сплошной сре-

ды» [1] (с. 75 первого тома) указал, что современ-
ная гидродинамика и электродинамика являют-
ся не точными науками, а лишь приближенны-
ми, так как пренебрегают учетом высших инва-
риантов тензора скоростей деформаций: квадра-
тичным и кубичным. Эйлером в раннем вариан-
те доклада 1752 г. в Прусской АН его знаменитой
работы Principia motus fluidorum [2–4], опубли-
кованной на латыни, уравнение неразрывности
для несжимаемой жидкости было выведено с уче-
том членов высокого порядка малости по време-
ни деформации контрольной фигуры. Француз-
ский текст более позднего доклада 1755 г. в Прус-
ской АН Principes generaux du movement des fluids
членов высокого порядка малости не содержит.

Эйлер выводил уравнение неразрывности для
несжимаемой жидкости геометрическим путем
сравнением начального объема контрольной фи-
гуры, например, единичного куба, с деформи-
рованным деформациями растяжения и сдви-
га вдоль координатных осей. Эйлер использо-
вал линейный по времени закон деформации,
соответствующий линейному лагранжеву зако-
ну движения жидкой частицы. Разность объе-
мов скошенного параллелепипеда и начально-
го единичного куба возрастает по кубическому
закону от времени. Поэтому уравнение нераз-
рывности получилось, имеющим параболиче-

скую зависимость от времени. Поскольку объ-
ем скошенного параллелепипеда вычисляется
скалярно-векторным произведением векторов,
идущих вдоль ребер скошенного параллелепи-
педа, то результат вычисления объема содержит
16 слагаемых.

К. Труделл [4] в 1954 г. объединил члены высо-
кого порядка малости в якобианы поля скорости
второго и третьего порядков

∂u
∂x
+
∂v
∂y
+
∂w
∂z
+(t − t0)

[︂
∂ (u, v)
∂ (x, y)

+
∂ (v,w)
∂ (y, z)

+
∂ (w, u)
∂ (z, x)

]︂
+

+ (t − t0)2 ∂ (u, v,w)
∂ (x, y, z)

= 0,

где u, v,w – компоненты скорости по осям ко-
ординат x, y, z, t − t0 – время деформации кон-
трольной фигуры, ∂(u,v)

∂(x,y) и ∂(u,v,w)
∂(x,y,z) – якобианы вто-

рого и третьего порядков поля скорости. Эйлер
при этом использовал линейный по времени за-
кон движения жидкой частицы.

Уравнение неразрывности для несжимаемой
жидкости c использованием квадратичного I2 и
кубичного I3 инвариантов поля скорости записы-
вается так

∂u
∂x
+
∂v
∂y
+
∂w
∂z
+ (t − t0) I2 + (t − t0)2I3 = 0,

320



ИСПОЛЬЗОВАНИЕ ГЕОМЕТРИЧЕСКИХ СВОЙСТВ ТРЕХ ИНВАРИАНТОВ 321
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Будем слагаемые при втором, квадратичном
инварианте называть членами второго порядка
малости по времени, какими они являются в ба-
лансе количества вещества, предшествующем за-
писи уравнения неразрывности. Аналогично бу-
дем называть слагаемое, содержащее третий, ку-
бичный инвариант членом третьего порядка ма-
лости, как в балансе количества вещества.

В 2006 г. с использованием линейного лагран-
жева закона движения жидкой частицы было вы-
писано уравнение неразрывности также для сжи-
маемой среды [5], в которой могут возникать вол-
ны плотности и давления. При этом квадратич-
ный и кубичный инварианты, как раз и оказа-
лись побудителями генерации гидродинамиче-
ских волн.

М.В. Остроградский, выводил уравнение
неразрывности тоже с использованием линейно-
го лагранжева закона движения жидкой частицы.
Поэтому его вывод приводит тоже к параболиче-
ской зависимости в уравнении неразрывности от
времени. Однако он исказил реальные траекто-
рии жидких частиц применением направляющих
косинусов и поэтому утратил члены высоко-
го порядка малости по времени в уравнении
неразрывности. При точном учете траекторий
жидких частиц в построениях Остроградского в
уравнении неразрывности возникают такие же
слагаемые высокого порядка малости, как у Эй-
лера. Это проверено численно на потенциальном
течении обтекания прямого угла.

Максвелл включил в систему уравнений элек-
тродинамики уравнение Гаусса–Остроградского,
как уравнение, отражающее формы линий тока в
жидкости между источником и стоком, и формы
линий магнитного поля подковообразного маг-
нита. Это дает основание попробовать включить
в уравнения Гаусса–Остроградского слагаемые с
квадратичным и кубичным инвариантами. Для
описания магнитного поля H⃗ это было сделано в
работах [6–9]. Для расчета поведения электриче-
ского поля E⃗ это делается в этой статье.

В уравнения Максвелла, как в основополага-
ющие для большого количества разделов науки
уравнения, временами делаются предложения по
их усовершенствованию. Ранее дополнительные
слагаемые вносились в систему уравнений Макс-
велла, как аналоги магнитного заряда. При раз-
работке численных методов решения задач элек-
тродинамики тоже вносились в уравнения Макс-
велла дополнительные слагаемые для улучшения

сходимости итераций [10]. Здесь мы делаем до-
полнение системы уравнений электродинамики
членами высокого порядка малости уравнения
неразрывности, содержащими высшие инвари-
анты, расширяющее круг описываемых ею за-
дач. Учет членов с высшими инвариантами меня-
ет тип соответствующего волнового уравнения с
однородного на неоднородное, которое способ-
но генерировать волны. Ввиду появления реше-
ний в виде степенных функций амплитуда возни-
кающих волн может быть большой. В частности,
по гидродинамическому волновому уравнению в
расчете получена волна, способная поднять ро-
тор гидротурбины Саяно-Шушенской ГЭС в ава-
рии [11], произошедшей в 2009 г. Большого ро-
ста напряженностей электрического поля можно
ожидать и в электродинамике.

УЧЕТ КВАДРАТИЧНОГО И КУБИЧНОГО
ИНВАРИАНТОВ В УРАВНЕНИИ

НЕРАЗРЫВНОСТИ ДЛЯ НАПРЯЖЕННОСТИ
ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Имеются основания при выводе волновых
уравнений электродинамики, добавить в систе-
му уравнений Максвелла члены с квадратичным
и кубичным инвариантами в уравнение Гаусса–
Остроградского для напряженности электриче-
ского поля E⃗.

Полное уравнение неразрывности для сжимае-
мой жидкости или газа было записано в 2006 г. [5]
в виде

∂ρ

∂t
+
∂
(︀
ρu

)︀
∂x

+
∂
(︀
ρv
)︀

∂y
+
∂
(︀
ρw

)︀
∂z
+

+ (t − t0) ρ
[︂
∂ (u, v)
∂ (x, y)

+
∂ (v,w)
∂ (y, z)

+
∂ (w, u)
∂ (z, x)

]︂
+

+(t − t0)2
ρ∂ (u, v,w) /∂ (x, y, z) = 0,

где ρ – плотность.
Пока не было выписано уравнение неразрыв-

ности для сжимаемого газа [5], учесть в уравнени-
ях Максвелла члены высокого порядка малости
было затруднительно, так как члены с якобиана-
ми второго и третьего порядков для напряжен-
ности электрического поля отличались по раз-
мерности от основных членов уравнения Гаусса–
Остроградского. Для разрешения этой трудности
проанализируем процесс введения плотности ρ
в выводе 2006 г. полного уравнения неразрывно-
сти [5] для сжимаемого газа с членами высоко-
го порядка малости. В этом выводе для уравне-
ния неразрывности газовой динамики произво-
дилось разбиение массового расхода G на произ-
ведение плотности и объемного расхода Q

G = ρQ

или
ρvS = ρ (vS ) .
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Напряженность электрического поля E, изме-
ряемая в системе СИ в В/м, имеет более сложную
размерность [L–1/2 ·M1/2 · T–1], чем скорость V с
размерностью [L ·T–1], присутствующая под зна-
ком дивергенции в построениях Эйлера. Поэто-
му, если в члене второго порядка малости встре-
тится произведение двух производных вида ∂Ex

∂x ,
то за счет размерности множителя (t − t0) член
второго порядка малости не сравняется по раз-
мерности с основными членами уравнения пер-
вого порядка малости.

Для учета членов высокого порядка малости
уравнения неразрывности в уравнениях элек-
тродинамики приходится разложить размерность
напряженности электрического поля E на про-
изведение, имеющее размерность скорости, и
остальную часть K со сложной размерностью

[E] = (кг/м)0.5 · 1/с = (кг0.5/м1.5) · м/с =

= (кг/м3)0.5 · м/с.

Наводящим соображением для выделения фи-
зически понятного сомножителя, характеризу-
ющего электрическое поле, является появле-
ние аналога плотности с размерностью кг/м3,
находящейся в непривычной степени 0.5. Его
аналогом для электрического поля может слу-
жить объемная плотность электрического заря-
да q, измеряющаяся в кулонах на кубометр или
[L–3/2 ·M1/2 · T–1]. Выражая массу в кг, линейный
масштаб в м, а время в секундах, получаем

(кг/м3)0.5 · 1/с = Кл/м3

или
(кг/м3)0.5 = (Кл/м3) · с.

Таким образом,

[E] = [V] [K] .

Сомножитель K имеет размерность времени,
умноженного на объемную плотность заряда.

Для рассмотрения напряженности электриче-
ского поля объемная плотность заряда q являет-
ся определяющей величиной, исходным данным
для расчета. Поэтому оставим ее целостной в раз-
ложении E на необходимые сомножители

[E] = [q] [τ] [V] = [K] [V] = (Кл/м3) · с · м/с,

[K] = [q] [τ] = (Кл/м3) · с.

Выражение для обобщенного третьего уравне-
ния электродинамики будет иметь вид

∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
+

⎡⎣∂
(︁

Ex

K ,
Ey

K

)︁
∂ (x, y)

+
∂
(︁

Ey

K ,
Ez

K

)︁
∂ (y, z)

+

+
∂
(︀Ez

K ,
Ex
K

)︀
∂ (z, x)

]︃
(t − t0) (qτ)+

+
∂
(︁

Ex

K ,
Ey

K ,
Ez

K

)︁
∂ (x, y, z)

(t − t0)2 (qτ) = 0.

Отношения вида Ex
K получили размерность

скорости, как и в якобианах гидродинамическо-
го уравнения. К члену второго порядка малости
добавлен множителем коэффициент [K] = [q] [τ],
сохраняющий за членом второго порядка мало-
сти размерность производной по координате на-
пряженности электрического поля Ex. К члену
третьего порядка малости добавлен множителем
тоже коэффициент [K] = [q] [τ] , сохраняющий за
членом третьего порядка малости ту же размер-
ность производной по координате напряженно-
сти электрического поля Ex .

Мы скопировали процесс поправки размерно-
сти членов высокого порядка малости уравне-
ния теоремы Гаусса–Остроградского с проведе-
ния учета сжимаемости в полном гидродинами-
ческом уравнении неразрывности.

Теперь можно произвести сокращение коэф-
фициентов K с вынесением их из-под знаков яко-
бианов и раскрытием как qτ. Получено уравне-
ние Гаусса–Остроградского для напряженности
электрического поля

∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
+

[︂
(t − t0)

qτ

]︂[︃
∂
(︀
Ex, Ey

)︀
∂ (x, y)

+

+
∂
(︀
Ey, Ez

)︀
∂ (y, z)

+
∂ (Ez, Ex)
∂ (z, x)

]︃
+

+

[︂
(t − t0)2

(qτ)2

]︂
∂
(︀
Ex, Ey, Ez

)︀
∂ (x, y, z)

= 0.

Добавление в уравнение Гаусса–Остроградско-
го дополнительных членов позволит более де-
тально учесть поведение электрического поля.

Введение дополнительных членов в уравнение
Гаусса–Остроградского для магнитного поля бы-
ло изложено в работах [6–9] и дало такой резуль-
тат

∂Hx

∂x
+
∂Hy

∂y
+
∂Hz

∂z
+

[︂
(t − t0)

qτ

]︂[︃
∂
(︀
Hx,Hy

)︀
∂ (x, y)

+

+
∂
(︀
Hy,Hz

)︀
∂ (y, z)

+
∂ (Hz,Hx)
∂ (z, x)

]︃
+

+

[︂
(t − t0)2

(qτ)2

]︂
∂
(︀
Hx,Hy,Hz

)︀
∂ (x, y, z)

= 0,

где Hx, Hy, Hz – компоненты напряженности маг-
нитного поля вдоль осей координат x, y, z. Здесь
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введен неизвестный пока коэффициент qτ, урав-
нивающий размерности слагаемых с различными
инвариантами по размерности.

С использованием квадратичного IE2 и кубич-
ного IE3 инвариантов для электрического поля E⃗
и квадратичного IH2 и кубичного IH3 инвариантов
для магнитного поля H⃗ уравнения записываются
так

∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
+

[︂
(t − t0)

(qτ)

]︂
IE2 +

[︂
(t − t0)2

(qτ)2

]︂
IE3 = 0,

∂Hx

∂x
+
∂Hy

∂y
+
∂Hz

∂z
+

[︂
(t − t0)

qτ

]︂
IH2+

[︂
(t − t0)2

(qτ)2

]︂
IH3 = 0.

Введение неизвестного коэффициента qτ,
уравнивающего размерности слагаемых с раз-
личными инвариантами по размерности для
уравнения неразрывности для напряженности
магнитного поля достаточно полно описано
в работе [9]. Отметим только, что он имеет
размерность тоже, как произведение плот-
ности электрического заряда на время, как
и для напряженности электрического поля.
Этим объясняется выбор обозначения одного
коэффициента двумя буквами. Перейдем к вы-
воду волнового уравнения для напряженности
электрического поля.

ВЫВОД ВОЛНОВОГО УРАВНЕНИЯ
ДЛЯ НАПРЯЖЕННОСТИ

ЭЛЕКТРИЧЕСКОГО ПОЛЯ
В уравнениях Максвелла уравнения неразрыв-

ности для напряженности электрического и маг-
нитного поля имеют подобный вид с точностью
до знаков в правых частях. Поэтому вывод волно-
вых уравнение для полей E⃗ и H⃗ может быть ана-
логичный.

Система уравнений электродинамики с выс-
шими инвариантами примет вид

∂Ez

∂y
−
∂Ey

∂z
= −µµ0

∂Hx

∂t
, (1)

∂Ex

∂z
−
∂Ez

∂x
= −µµ0

∂Hy

∂t
, (2)

∂Ey

∂x
−
∂Ex

∂y
= −µµ0

∂Hz

∂t
, (3)

∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
+

+

[︂
(t − t0)

(qτ)

]︂
IE2 +

[︂
(t − t0)2

(qτ)2

]︂
IE3 = 0,

(4)

∂Hz

∂y
−
∂Hy

∂z
= εε0

∂Ex

∂t
+ jx, (5)

∂Hx

∂z
−
∂Hz

∂x
= εε0

∂Ey

∂t
+ jy, (6)

∂Hy

∂x
−
∂Hx

∂y
= εε0

∂Ez

∂t
+ jz, (7)

∂Hx

∂x
+
∂Hy

∂x
+
∂Hz

∂z
+

+

[︂
(t − t0)

qτ

]︂
IH2 +

[︂
(t − t0)2

(qτ)2

]︂
IH3 = 0.

(8)

Здесь ε0 и µ0 – электрическая и магнитная по-
стоянные; ε и µ – относительная диэлектриче-
ская и магнитная проницаемости среды; jx, jy,
jz – компоненты плотности электрического тока
вдоль осей координат x, y, z.

В работе [6] был представлен вывод волново-
го уравнения для напряженности магнитного по-
ля при учете квадратичного IH2 и кубичного IH3
инвариантов. Давайте выведем волновое уравне-
ние для напряженности электрического поля при
учете квадратичного IE2 и кубичного IE3 инвари-
антов.

В уравнении (5) перенесем член с плотностью
электрического тока jx в левую часть равенства и
получим

− jx +
∂Hz

∂y
−
∂Hy

∂z
= εε0

∂Ex

∂t
.

Поменяем стороны равенства местами

εε0
∂Ex

∂t
=
∂Hz

∂y
−
∂Hy

∂z
− jx.

Возьмем производную по времени t от обеих
частей равенства

εε0
∂2Ex

∂t2 =
∂

∂t

[︂
∂Hz

∂y
−
∂Hy

∂z

]︂
−
∂ jx

∂t
. (9)

Поменяв порядок взятия производных по вре-
мени t и координатам x, y, z, продолжим равен-
ство так

=
∂

∂y

(︂
∂Hz

∂t

)︂
−
∂

∂z

(︂
∂Hy

∂t

)︂
−
∂ jx

∂t
.

Уравнения (3) и (2) приведем к виду

∂Hz

∂t
=

1
µµ0

[︂
∂Ex

∂y
−
∂Ey

∂x

]︂
,

∂Hy

∂t
=

1
µµ0

[︂
∂Ez

∂x
−
∂Ex

∂z

]︂
.

Используя эти уравнения, продолжим равен-
ство для вывода волнового уравнения так

=
1
µµ0

[︂
∂2Ex

∂y2 −
∂2Ey

∂x∂y

]︂
−

1
µµ0

[︂
∂2Ez

∂x∂z
−
∂2Ex

∂z2

]︂
−
∂ jx

∂t
.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 89 № 2 2025



324 ОВСЯННИКОВ

В полученном выражении произведем переста-
новку порядка слагаемых

= −
∂ jx

∂t
+

1
µµ0

[︂
∂2Ex

∂y2 +
∂2Ex

∂z2

]︂
−

−
1
µµ0

[︂
∂2Ey

∂x∂y
+
∂2Ez

∂x∂z

]︂
.

(10)

От уравнения (4) возьмем производную по ко-
ординате x

∂2Ex

∂x2 +
∂2Ey

∂x∂y
+
∂2Ez

∂x∂z
+

+

[︂
(t − t0)

(qτ)

]︂
∂IE2

∂x
+

[︂
(t − t0)2

(qτ)2

]︂
∂IE3

∂x
= 0.

(11)

Сделаем в этом уравнении (11) перестанов-
ку порядка слагаемых и умножим каждый член
на 1
µµ0

−
1
µµ0

[
∂2Ey

∂x∂y
+
∂2Ez

∂x∂z
] =

1
µµ0

∂2Ex

∂x2 +
1
µµ0

[︂
(t − t0)

(qτ)

]︂
×

×
∂IE2

∂x
+

1
µµ0

[︂
(t − t0)2

(qτ)2

]︂
∂IE3

∂x
. (12)

Обратим внимание на то, что левая часть урав-
нения (12) совпадает с последним слагаемым ра-
венства (10). Продолжим равенство (10) для вы-
вода волнового уравнения, заменив в нем послед-
нее слагаемое правой частью уравнения (12).

= −
∂ jx

∂t
+

1
µµ0

[︂
∂2Ex

∂x2 +
∂2Ex

∂y2 +
∂2Ex

∂z2

]︂
+

+
1
µµ0

[︂
(t − t0)

(qτ)

]︂
∂IE2

∂x
+

1
µµ0

[︂
(t − t0)2

(qτ)2

]︂
∂IE3

∂x
. (13)

Приравняв начальное выражение выводяще-
гося волнового уравнения в виде правой части
уравнения (9) полученному выражению (13), по-
лучим

εε0
∂2Ex

∂t2 = −
∂ jx

∂t
+

1
µµ0

[︂
∂2Ex

∂x2 +
∂2Ex

∂y2 +
∂2Ex

∂z2

]︂
+

+
1
µµ0

[︂
(t − t0)

(qτ)

]︂
∂IE2

∂x
+

1
µµ0

[︂
(t − t0)2

(qτ)2

]︂
∂IE3

∂x
.

Умножим все слагаемые на µµ0 и сделаем пере-
становку слагаемых для организации в левой ча-
сти волнового оператора Даламбера для напря-
женности электрического поля в направлении
оси x

∂2Ex

∂x2 +
∂2Ex

∂y2 +
∂2Ex

∂z2 − µµ0εε0
∂2Ex

∂t2 =

= µµ0
∂ jx

∂t
−

[︂
(t − t0)

(qτ)

]︂
∂IE2

∂x
−

[︂
(t − t0)2

(qτ)2

]︂
∂IE3

∂x
.

Вводя скорость распространения электромаг-
нитных волн в вакууме c, получим такой вид вол-
нового уравнения для напряженности электри-
ческого поля в направлении оси x

∂2Ex

∂x2 +
∂2Ex

∂y2 +
∂2Ex

∂z2 −
εµ

c2
∂2Ex

∂t2 =

= µµ0
∂ jx

∂t
−

[︂
(t − t0)

(qτ)

]︂
∂IE2

∂x
−

[︂
(t − t0)2

(qτ)2

]︂
∂IE3

∂x
. (14)

Аналогично запишем волновое уравнение в
направлении оси y

∂2Ey

∂x2 +
∂2Ey

∂y2 +
∂2Ey

∂z2 −
εµ

c2
∂2Ey

∂t2 =

= µµ0
∂ jy

∂t
−

[︂
(t − t0)

(qτ)

]︂
∂IE2

∂y
−

[︂
(t − t0)2

(qτ)2

]︂
∂IE3

∂y
(15)

и в направлении оси z

∂2Ez

∂x2 +
∂2Ez

∂y2 +
∂2Ez

∂z2 −
εµ

c2
∂2Ez

∂t2 =

= µµ0
∂ jz

∂t
−

[︂
(t − t0)

(qτ)

]︂
∂IE2

∂z
−

[︂
(t − t0)2

(qτ)2

]︂
∂IE3

∂z
. (16)

Для сравнения приведем также полученное в
работах [6–9] волновое уравнение для напряжен-
ности магнитного поля по оси x

∂2Hx

∂x2 +
∂2Hx

∂y2 +
∂2Hx

∂z2 − εε0µµ0
∂2Ex

∂t2 =
∂Jy

∂z
−
∂Jz

∂y
−

−
(t − t0)
τq

∂
[︁
∂(Hx,Hy)
∂(x,y) +

∂(Hy,Hz)
∂(y,z) +

∂(Hz,Hx)
∂(z,x)

]︁
∂x

−

−

[︂
(t − t0)
τq

]︂2 ∂
[︁
∂(Hx,Hy,Hz)
∂(x,y,z)

]︁
∂x

.

Мы видим, что волны магнитного поля генери-
руются, как и электрического поля, производны-
ми по координате от второго и третьего инвари-
антов. Области сильного изменения инвариан-
тов IE2 и IE3 стационарного поля электрической
напряженности по координатам создают волны
электрического поля. Области сильного измене-
ния инвариантов IH2 и IH3 стационарного поля
магнитной напряженности по координатам со-
здают волны магнитного поля.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 89 № 2 2025



ИСПОЛЬЗОВАНИЕ ГЕОМЕТРИЧЕСКИХ СВОЙСТВ ТРЕХ ИНВАРИАНТОВ 325

ОБСУЖДЕНИЕ ВИДА РЕШЕНИЙ
НЕОДНОРОДНОГО ВОЛНОВОГО

УРАВНЕНИЯ ДЛЯ НАПРЯЖЕННОСТИ
ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Развитие техники, приборостроения, измери-
тельных средств, выход в Космос привели к на-
коплению колоссального объема эксперимен-
тальной информации по характеру магнитных и
электрических полей и изменению их во вре-
мени. Их осмысление, сопоставление с теорети-
ческими моделями, моделирование численными
методами надо делать с использованием наибо-
лее полного теоретического аппарата.

Выведенные в предыдущем разделе неодно-
родные волновые уравнения (14), (15), (16) со-
держат в правой части волновой оператор Далам-
бера, передающий через контрольный объем вол-
ны напряженности, возникающие на его грани-
цах. А неоднородные члены левой части видоиз-
меняют их, создавая новые волны или усиливая
имеющиеся. Такое назначение имеют члены, со-
держащие плотность электрического тока j⃗ и чле-
ны, отражающие скорость изменения квадратич-
ного и кубичного инвариантов поля E⃗ по коорди-
натам x, y, z.

Гидродинамическое волновое уравнение, вы-
веденное с учетом квадратичного I2 и кубичного
I3 инвариантов поля скорости в сжимаемой жид-
кости [12], генерирует волны, с интенсивностью,
зависящей не от производных инвариантов, а от
самой их величины I2, I3.

∂2 p/∂x2 + ∂2 p/∂y2 + ∂2 p/∂z2 − c−2
0 ∂

2 p/∂t2 =

= ρ0I2 + (t − t0)ρ02I3.

Здесь p – волновое давление, ρ0 – термодинами-
ческая плотность, c0 – скорость распространения
звука.

С использованием этого гидрогазодинамиче-
ского уравнения, содержащего квадратичный и
кубичный инварианты, решено порядка деся-
ти задач на возникновение акустических волн в
определенных местах стационарного поля скоро-
сти, где инварианты I2, I3 имеют большое значе-
ние. Опыт этих решений поможет найти места,
где в напряженности стационарного электриче-
ского поля производные по координатам от ин-
вариантов IE2, IE3 велики. В этих местах можно
ожидать генерацию волн напряженности элек-
трического поля.

Решения волновых уравнений имеют вид уеди-
ненной волны напряженности электрического
поля, возрастающей во времени по степенному
закону. За счет члена с производными по ко-
ординатам от инварианта IE2 получается волна,
возрастающая пропорционально третьей степе-
ни времени. За счет членов с производными по
координатам от инварианта IE3 генерируется бо-
лее крутая волна, возрастающая пропорциональ-

но четвертой степени времени. Величина неиз-
вестного коэффициента qτ может быть опреде-
лена в результате сравнений решений волнового
уравнения с результатами натурных наблюдений.

ИСПОЛЬЗОВАНИЕ ВОЛНОВОГО
УРАВНЕНИЯ ДЛЯ ОБЪЯСНЕНИЯ

ОСТАНОВОК ЛИДЕРА МОЛНИИ МЕЖДУ
ДВУМЯ СТУПЕНЯМИ ПЕРЕМЕЩЕНИЯ

С 1930-х годов, когда начались фотоэлектри-
ческие наблюдения молний, было установлено,
что лидер молнии между двумя ступенями совер-
шает остановку. Построению физической и ма-
тематической модели молнии посвящено мно-
го работ, например [13–15]. В работе [13] по-
строена численная модель расчета движения сту-
пенчатого лидера отрицательной молнии. Со-
гласно обзору многочисленных эксперименталь-
ных данных, приведенных в этой работе, оста-
новка продвижения лидера между двумя ступе-
нями происходит за время от 0.7 до 146.6 мкс.
Средним значением временем остановки при-
нята величина 37.4 мкс = 37.4 · 10−6 с. Дли-
на ступеней наблюдается в пределах от 1.3 до
20 м. Согласно текущим знаниям об электриче-
ских параметрах отрицательных лидерах молний
для инициирования движения требуется боль-
шая напряженность электрического поля E−ith =
= 2.68 МВ/м = 2680000 В/м. Дальнейшее продви-
жение лидера происходит при более низкой на-
пряженности электрического поля, пока оно не
понизится до E−pth = 0.62 МВ/м = 620000 В/м.
Это напряженность угасания разряда. С элек-
трическим током вдоль лидера происходит пере-
текание электрического заряда, который остает-
ся в голове лидера, в месте затухания его про-
движения. От основного лидера уходят в сторо-
ны и затухают слабые разряды, образующие ко-
рону вокруг основного лидера. При остановке
лидера в конце ступени в пространстве, окру-
жающем молнию, возникает новое, обновлен-
ное поле электрической напряженности. Его на-
пряженности недостаточно для продвижения ли-
дера молнии. Согласно решению приведенно-
го выше волнового уравнения (16), для дальней-
шего продвижения основного лидера собирается
вектор напряженности в новом направлении из-
за неравномерности распределения напряженно-
сти электрического поля по направлениям, кон-
тролируемой производной от квадратичного ин-
варианта по направлению.

Упрощенное волновое уравнение, например, в
направлении оси z

εµ

c2
∂2Ez

∂t2 =

[︂
(t − t0)

(qτ)

]︂
∂IE2

∂z
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имеет решение (при ε = 1, µ = 1) в виде степенной
функции

Ez =
c2

6qτ
(t − t0)3 ∂IE2

∂z
, (17)

где

IE2 =

⃒⃒⃒⃒
⃒
∂Ex
∂x

∂Ex
∂y

∂Ey

∂x
∂Ey

∂y

⃒⃒⃒⃒
⃒ +

⃒⃒⃒⃒
⃒
∂Ey

∂y
∂Ey

∂z
∂Ez
∂y

∂Ez
∂z

⃒⃒⃒⃒
⃒ +

⃒⃒⃒⃒
⃒ ∂Ez
∂z

∂Ez
∂x

∂Ex
∂z

∂Ex
∂x

⃒⃒⃒⃒
⃒ .

При окончании разряда на рассматривае-
мой ступени напряженность электрического
поля равна напряженности угасания разряда
E−pth = 0.62 МВ/м = 620000 В/м. Путь лидера на
рассматриваемой ступени окружен короной,
из угасших ответвлений разрядов от основного
лидера. Как указано в работе [13], «заряд, перене-
сенный в узел, соответствующий разрушенному
концу ответвления, остается «замороженным»
в этом узле из-за низкой проводимости среды».
Поэтому можно говорить о возникновении
геометрически нового поля электрической на-
пряженности на каждой ступени продвижения
лидера. Расстояние изменения электрической
напряженности от 620000 В/м до нуля будем
считать равным 10 м. Эта величина близка к ра-
диусу цилиндра, использованного в работе [13].
Величину квадратичного, второго инварианта
вычислим по изменению напряженности от
значения 620000 В/м до нуля на расстоянии 10 м.
Тангенциальные производные положим равны-
ми нулю. Тогда величину второго, квадратичного
инварианта можно оценить так

IE2 =

⃒⃒⃒⃒
625000

10 0
0 625000

10

⃒⃒⃒⃒
+

⃒⃒⃒⃒
625000

10 0
0 625000

10

⃒⃒⃒⃒
+

+

⃒⃒⃒⃒
625000

10 0
0 625000

10

⃒⃒⃒⃒
= 1.16 · 1010 В2/м2.

Вычислим производную от инварианта IE2 по
направлению z, приняв характерное расстояние
изменения величины инварианта ∆z = 10 м.

∂IE2

∂z
=

1.16 · 1010

10
= 1.16 · 109 В2/м3.

По формуле (17) можно оценить величину qτ,
если подставить в нее вычисленное значение
производной ∂IE2

∂z и время повышения напряжен-
ности электрического поля до значения напря-
жения пробоя воздуха Ez = E−ith = 2680000 В/м,
равным t − t0 = 37.4 · 10−6 с. Скорость света
= 3 · 108 м/с.

Расчет дает оценку qτ = 3400 В · c/м2. После
достижения напряжением электрического поля
значения пробоя воздуха E−ith лидером соверша-
ется продвижение вдоль новой ступени. Уравне-
ние (17) является результатом упрощения реше-
ния волнового уравнения, полученного с учетом

вычисленных Эйлером членов высокого порядка
малости, нарушающих сохранение и порождаю-
щих волну роста напряженности электрического
поля. Рост напряженности электрического поля с
малой величины до 2.68 МВ/м, использованный
в расчете, является примером, когда члены высо-
кого порядка малости дают важные результаты.

Уравнение (17) является возможной матема-
тической моделью поведения сплошной среды,
предсказанной Эйлером на основании классиче-
ской геометрии.

ЗАКЛЮЧЕНИЕ
В уравнении Гаусса–Остроградского для на-

пряженности электрического поля в системе
уравнений электродинамики Максвелла учтены
выведенные Эйлером члены высокого порядка
малости по времени, содержащие квадратичный
и кубичный инварианты тензора скоростей де-
формаций.

Выведено волновое уравнение для напряжен-
ности электрического поля, учитывающее квад-
ратичный и кубичный инварианты тензора ско-
ростей деформаций, вычисленные Эйлером. По-
лученные дополнительно неоднородные члены
волнового уравнения создают потенциал учетом
неравномерности распределения значений яко-
бианов и инвариантов поля электрической на-
пряженности E⃗ в окружающем пространстве.

Учет квадратичного и кубичного инвариантов
в уравнениях электродинамики Максвелла поз-
воляет математически моделировать остановку
молний между ступенями для увеличения разно-
сти потенциалов, необходимой для движения ли-
дера на следующей ступени.
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Using the geometric properties of three invariants in the wave equation

for the electric field strength

V. M. Ovsyannikov*

Russian University of Transport, Academy of Water Transport, Moscow, 127994 Russia
*e-mail: OvsyannikovVM@yandex.ru

In Euler’s work Principia motus fluidorum, the continuity equation for a fluid is derived using high-order
terms of smallness that contain the quadratic and cubic invariants of the strain rate tensor. From Maxwell’s
system of electrodynamics equations, the wave equation for the electric field strength is derived taking
into account the quadratic and cubic invariants. These invariants describe the generation of electric field
intensity waves.
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