RAS PhysicsИзвестия Российской академии наук. Серия физическая Bulletin of the Russian Academy of Sciences: Physics

  • ISSN (Print) 0367-6765
  • ISSN (Online) 3034-6460

Conversion of selective characteristics of electrically controlled chirped multilayer inhomogeneous diffraction structures based on photopolymerizing compositions with nematic liquid crystals

PII
S0367676525010057-1
DOI
10.31857/S0367676525010057
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 89 / Issue number 1
Pages
28-33
Abstract
We developed the analytical model of optical radiation diffraction on chirped multilayer inhomogeneous diffraction structures formed by the holographic method in photopolymerizing compositions with nematic liquid crystals having smooth optical heterogeneity in layer thickness. By numerical calculation, it was shown that using the chirping method it is possible to multiply the angular and spectral characteristics of multilayer inhomogeneous holographic diffraction structures formed in photopolymerizing compositions with nematic liquid crystals.
Keywords
многослойная неоднородная дифракционная голографическая структура фотополимеризующаяся композиция с нематическими жидкими кристаллами чирпированные структуры
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Шарангович С.Н., Долгирев В.О., Растрыгин Д.С. // Изв. РАН. Сер. физ. 2024. Т. 88. № 1. С. 11
  2. 2. Sharangovich S.N., Dolgirev V.O., Rastrygin D.S. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 1. P. 6.
  3. 3. Долгирев В.О., Шарангович С.Н. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 12
  4. 4. Sharangovich S.N., Dolgirev V.O. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 7.
  5. 5. Malallah R., Li H., Qi Y. et al. // J. Opt. Soc. Amer. A. 2019. V. 36. No. 3. P. 320.
  6. 6. Malallah R., Li H., Qi Y. et al. // J. Opt. Soc. Amer. A. 2019. V. 36. No. 3. P. 334.
  7. 7. Pen E.F., Rodionov M.Yu., Chubakov P.A. // Optoelectron. Instrum. Data Process. 2017. V. 53. P. 59.
  8. 8. Pen E.F., Rodionov M.Yu. // Quantum Electron. 2017. V. 40. No. 10. P. 919.
  9. 9. Nordin G.P., Johnsonm R.V. // J. Opt. Soc. Amer. A. 1992. V. 9. No. 12. P. 2206.
  10. 10. Yan X., Wang X., Chen Y. et al. // Appl. Phys. B. 2019. V. 125. Art. No. 67.
  11. 11. Yan X., Gao L., Yang X. et al. // Opt. Express. 2014. V. 22. No. 21. P. 26128.
  12. 12. Казанский Н.Л., Хонина С.Н., Карпеев С.В., Порфирьев А.П. // Квант. электрон. 2020. Т. 50. № 7. С. 636
  13. 13. Kazanskiy N.L., Khonina S.N., Karpeev S.V. et al. // Quantum Electron. 2020. V. 50. No. 7. P. 629.
  14. 14. Kudryashov S.I. // Appl. Surf. Sci. 2019. V. 484. P. 948.
  15. 15. Pavlov D. // Optics Lett. 2019. V. 44. No. 2. P. 283.
  16. 16. Aimin Y., Liren L., Yanan Z. et al. // J. Opt. Soc. Amer. A. 2009. V. 26. No. 1. P. 135.
  17. 17. Dovolnov E.A., Sharangovich S.N., Sheridan J.T. // Photorefractive effects, materials, and devices 2005 (PR05). OSA Trends in Optics and Photonics Series (TOPS), 2005. P. 337.
  18. 18. Сонин А.С. Введение в физику жидких кристаллов. M.: Наука. Главн. ред. физ.-мат. лит., 1983. 320 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library