RAS PhysicsИзвестия Российской академии наук. Серия физическая Bulletin of the Russian Academy of Sciences: Physics

  • ISSN (Print) 0367-6765
  • ISSN (Online) 3034-6460

Differential gain of THz radiation in crystalline quartz plate in the field of pump wave

PII
S0367676525010107-1
DOI
10.31857/S0367676525010107
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 89 / Issue number 1
Pages
57-62
Abstract
The possibility to exploit nonlinear Fabry–Perot interferometers to differential gain of terahertz radiation in the field of a pump wave of the same frequency was theoretically considered. It is shown that in mirrorless nonlinear Fabry–Perot interferometer consisted of crystalline quartz plate, which reflection is determined by Fresnel reflection only, the regime of maximal differential gain of radiation with central frequency at 1 THz can be observed at thickness of working medium near 1 mm and at radiation intensity with order of magnitude at 108 W⋅cm−2.
Keywords
нелинейный интерферометр Фабри–Перо терагерцовый спектральный диапазон беззеркальный интерферометр кристаллический кварц оптический транзистор дифференциальное усиление сигнала
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Луговой В.Н. // Квант. электрон. 1979. Т. 6. № 10. С. 2053
  2. 2. Lugovoi V.N. // Sov. J. Quantum Electron. 1979. V. 9. No. 10. P. 1207.
  3. 3. Gibbs H. Optical bistability: controlling light with light. Elsevier, 2012. 471 p.
  4. 4. Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М: Наука, 1988. 310 с.
  5. 5. Miller D.A.B. // Nature Photon. 2010. No. 4. P. 3.
  6. 6. Tcypkin A.N., Melnik M.V., Zhukova M.O. et al. // Opt. Express. 2019. V. 27. No. 8. P. 10419.
  7. 7. Francis K.J.G., Chong M.L.P., E Y., Zhang X.C. // Opt. Express. 2020. V. 45. No. 20. P. 5628.
  8. 8. Novelli F., Ma C.-Y., Adhlakha N. et al. // Appl. Sci. 2020. V. 10. No. 15. P. 5290.
  9. 9. Zhukova M.O., Melnik M.V., Vorontsova I.O. et al. // Photonics. 2020. V. 7. No. 4. P. 98.
  10. 10. Tcypkin A.N., Zhukova M.O., Melnik M.V. et al. // Phys. Rev. Appl. 2021. V. 15. No. 5. Art. No. 054009.
  11. 11. Artser I.R., Melnik M.V., Ismagilov A.O. et al. // Sci. Reports. 2022. V. 12. No. 1. Art. No. 9019.
  12. 12. Wu Q., Huang Y., Lu. Y. et al. // Light: Sci. Appl. 2023.
  13. 13. Zibod S., Rasekh P., Yildrim M. et al. // Adv. Opt. Mater. 2023. V. 11. No. 15. Art. No. 2202343.
  14. 14. Nabilkova A.O., Ismagilov A.O., Melnik M.V. et al. // Opt. Letters. 2023. V. 48. No. 5. P. 1312.
  15. 15. Гусельников М.С., Жукова М.О., Козлов С.А. // Опт. журн. 2022. Т. 89. № 7. С. 3
  16. 16. Guselnikov M.S., Zhukova M.O., Kozlov S.A. // J. Opt. Technol. 2022. V. 89. No. 7. P. 371.
  17. 17. Гусельников М.С., Жукова М.О., Козлов С.А. // Опт. и спектроск. 2023. Т. 131. № 2. С. 287.
  18. 18. Miller D.A.B., Smith S.D., Johnston A. // Appl. Phys. Lett. 1979. V. 35. No. 9. P. 658.
  19. 19. Власов С.Н., Таланов В.И. Самофокусировка волн. Нижний Новгород: ИПФ РАН, 1997. 217 с.
  20. 20. Boyd R.W. Nonlinear optics. Elsevier, 2008. 640 p.
  21. 21. Weber M., Milam D., Smith W. // Opt. Engin. 1978. V. 17. No. 5. P. 463.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library