- PII
- S0367676525020032-1
- DOI
- 10.31857/S0367676525020032
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 89 / Issue number 2
- Pages
- 180-183
- Abstract
- The properties of a silicon-based plasmonic detector of electromagnetic radiation were examined in the lowfrequency region (0.1-20 GHz). The detector’s sensitive element was embedded within a matched coplanar waveguide, through which the electromagnetic radiation was conveyed. The dependence of the DC voltage observed at the detector’s output on the frequency of the incident radiation was measured. The detector’s power characteristics were measured, and the threshold radiation power at which the detector transitions into a nonlinear regime was determined.
- Keywords
- плазмонный детектор электромагнитное излучение волновод
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 16
References
- 1. Baydin A., Makihara T., Peraca N.M., Kono J. // Front. Optoelectron. 2021. V. 14. P. 110.
- 2. Miyamoto T., Kondo A., Inaba T. et al. // Nature Commun. 2023. V. 14. No. 1. P. 6229.
- 3. Mertens M., Chavoshi M., Peytral-Rieu O. et al. // IEEE Microwave Mag. 2023. V. 24. No. 4. P. 49.
- 4. Wang P., Lou J., Fang G., Chang C. // IEEE Trans. Microwave Theory Tech. 2022. V. 70. No. 11. P. 5117.
- 5. Pearson J.C., Drouin B.J., Yu S. // IEEE J. Microwaves. 2021. V. 1. No. 1. P. 43.
- 6. Tamburini F., Licata I. // Particles. 2024. V. 7. No. 3. P. 576.
- 7. Chen Z., Ma X., Zhang B. et al. // China Commun. 2019. V. 16. No. 2. P. 1.
- 8. Yang X., Liu Y., Liu W. et al. // Trends Biotechnol. 2016. V. 34. No. 10. P. 810.
- 9. Khan S., Acharyya A., Inokawa H. et al. // Photonics. 2023. V. 10. No. 7. P. 800.
- 10. Tzydynzhapov G., Gusikhin P., Muravev V., Dremin A. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 632.
- 11. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M. et al. // Appl. Optics. 2021. V. 60. No. 33. P. 10448.
- 12. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 655.
- 13. Jelali M., Papadopoulos K. // Processes. 2024. V. 12. No. 4. P. 712.
- 14. Nsengiyumva W., Zhong Sh., Zheng L. et al. // IEEE Trans. Instrum. Meas. 2023.
- 15. Dyakonov M.I., Shur M.S. // IEEE Trans. Electron Devices. 1996. V. 43. No. 10. P. 1640.
- 16. Lu J.Q., Shur M.S. // Appl. Phys. Lett. 2001. V. 78. No. 17. P. 2587.
- 17. Fetterman H.R., Clifton B.J., Tannenwald P.E. et al. // Appl. Phys. Lett. 1974. V. 24. No. 2. P. 70.
- 18. Karasik B.S., Sergeev A.V., Prober D.E. //IEEE Trans. Terahertz Sci. Technol. 2011. V. 1. No. 1. P. 97.
- 19. Whatmore R.W. // Rep. Progr. Phys. 1986. V. 49. No. 12. P. 1335.
- 20. Fernandes L.O.T., Kaufmann P., Marcon R. et al. // Proc. XXX URSI General Assembly. (Istanbul, 2011). P. 1.
- 21. Muravev V.M., Gusikhin P.A., Andreev I.V., Kukushkin I.V. // Phys. Rev. Lett. 2015. V. 114. No. 10. Art. No. 106805.
- 22. Muravev V.M., Gusikhin P.A., Zarezin A.M. et al. // Phys. Rev. B. 2019. V. 99. No. 24. Art. No. 241406(R).
- 23. Muravev V.M., Kukushkin I.V. // Appl. Phys. Lett. 2012. V. 100. No. 8. Art. No. 082102.
- 24. Муравьев В.М., Соловьев В.В., Фортунатов А.А. и др. //Письма в ЖЭТФ. 2016. Т. 103. № 12. С. 891
- 25. Хисамеева А.Р., Щепетильников А.В., Федотова Я.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 2. С. 172
- 26. Shchepetilnikov A.V., Kaysin B.D., Gusikhin P.A. et al. // Opt. Quantum Electron. 2019. V. 51. No. 12. P. 1.