RAS PhysicsИзвестия Российской академии наук. Серия физическая Bulletin of the Russian Academy of Sciences: Physics

  • ISSN (Print) 0367-6765
  • ISSN (Online) 3034-6460

Low frequency properties of a silicon-based plasmonic detector

PII
S0367676525020032-1
DOI
10.31857/S0367676525020032
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 89 / Issue number 2
Pages
180-183
Abstract
The properties of a silicon-based plasmonic detector of electromagnetic radiation were examined in the lowfrequency region (0.1-20 GHz). The detector’s sensitive element was embedded within a matched coplanar waveguide, through which the electromagnetic radiation was conveyed. The dependence of the DC voltage observed at the detector’s output on the frequency of the incident radiation was measured. The detector’s power characteristics were measured, and the threshold radiation power at which the detector transitions into a nonlinear regime was determined.
Keywords
плазмонный детектор электромагнитное излучение волновод
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Baydin A., Makihara T., Peraca N.M., Kono J. // Front. Optoelectron. 2021. V. 14. P. 110.
  2. 2. Miyamoto T., Kondo A., Inaba T. et al. // Nature Commun. 2023. V. 14. No. 1. P. 6229.
  3. 3. Mertens M., Chavoshi M., Peytral-Rieu O. et al. // IEEE Microwave Mag. 2023. V. 24. No. 4. P. 49.
  4. 4. Wang P., Lou J., Fang G., Chang C. // IEEE Trans. Microwave Theory Tech. 2022. V. 70. No. 11. P. 5117.
  5. 5. Pearson J.C., Drouin B.J., Yu S. // IEEE J. Microwaves. 2021. V. 1. No. 1. P. 43.
  6. 6. Tamburini F., Licata I. // Particles. 2024. V. 7. No. 3. P. 576.
  7. 7. Chen Z., Ma X., Zhang B. et al. // China Commun. 2019. V. 16. No. 2. P. 1.
  8. 8. Yang X., Liu Y., Liu W. et al. // Trends Biotechnol. 2016. V. 34. No. 10. P. 810.
  9. 9. Khan S., Acharyya A., Inokawa H. et al. // Photonics. 2023. V. 10. No. 7. P. 800.
  10. 10. Tzydynzhapov G., Gusikhin P., Muravev V., Dremin A. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 632.
  11. 11. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M. et al. // Appl. Optics. 2021. V. 60. No. 33. P. 10448.
  12. 12. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 655.
  13. 13. Jelali M., Papadopoulos K. // Processes. 2024. V. 12. No. 4. P. 712.
  14. 14. Nsengiyumva W., Zhong Sh., Zheng L. et al. // IEEE Trans. Instrum. Meas. 2023.
  15. 15. Dyakonov M.I., Shur M.S. // IEEE Trans. Electron Devices. 1996. V. 43. No. 10. P. 1640.
  16. 16. Lu J.Q., Shur M.S. // Appl. Phys. Lett. 2001. V. 78. No. 17. P. 2587.
  17. 17. Fetterman H.R., Clifton B.J., Tannenwald P.E. et al. // Appl. Phys. Lett. 1974. V. 24. No. 2. P. 70.
  18. 18. Karasik B.S., Sergeev A.V., Prober D.E. //IEEE Trans. Terahertz Sci. Technol. 2011. V. 1. No. 1. P. 97.
  19. 19. Whatmore R.W. // Rep. Progr. Phys. 1986. V. 49. No. 12. P. 1335.
  20. 20. Fernandes L.O.T., Kaufmann P., Marcon R. et al. // Proc. XXX URSI General Assembly. (Istanbul, 2011). P. 1.
  21. 21. Muravev V.M., Gusikhin P.A., Andreev I.V., Kukushkin I.V. // Phys. Rev. Lett. 2015. V. 114. No. 10. Art. No. 106805.
  22. 22. Muravev V.M., Gusikhin P.A., Zarezin A.M. et al. // Phys. Rev. B. 2019. V. 99. No. 24. Art. No. 241406(R).
  23. 23. Muravev V.M., Kukushkin I.V. // Appl. Phys. Lett. 2012. V. 100. No. 8. Art. No. 082102.
  24. 24. Муравьев В.М., Соловьев В.В., Фортунатов А.А. и др. //Письма в ЖЭТФ. 2016. Т. 103. № 12. С. 891
  25. 25. Хисамеева А.Р., Щепетильников А.В., Федотова Я.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 2. С. 172
  26. 26. Shchepetilnikov A.V., Kaysin B.D., Gusikhin P.A. et al. // Opt. Quantum Electron. 2019. V. 51. No. 12. P. 1.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library