RAS PhysicsИзвестия Российской академии наук. Серия физическая Bulletin of the Russian Academy of Sciences: Physics

  • ISSN (Print) 0367-6765
  • ISSN (Online) 3034-6460

The response time of a silicon-based plasmonic detector

PII
S0367676525020043-1
DOI
10.31857/S0367676525020043
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 89 / Issue number 2
Pages
184-187
Abstract
The response time of a silicon-based plasmonic detector of electromagnetic radiation was investigated. For this purpose, frequency mixing experiments were carried out in the microwave frequency range. The sensitive element of the detector was embedded in the slits of a matched coplanar waveguide. The response time τ = 60±10 ps was estimated from the attenuation of the signal amplitude with increasing the difference frequency.
Keywords
плазмонный детектор электромагнитное излучение волновод время отклика
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Baydin A., Makihara T., Peraca N.M., Kono J. // Front. Optoelectron. 2021. V. 14. P. 110.
  2. 2. Miyamoto T., Kondo A., Inaba T. et al. // Nature Commun. 2023. V. 14. No. 1. P. 6229.
  3. 3. Mertens M., Chavoshi M., Peytral-Rieu O. et al. // IEEE Microwave. Mag. 2023. V. 24. No. 4. P. 49.
  4. 4. Wang P., Lou J., Fang G., Chang C. // IEEE Trans. Microwave. Theory Tech. 2022. V. 70. No. 11. P. 5117.
  5. 5. Pearson J.C., Drouin B.J., Yu S. //IEEE J. Microw. 2021. V. 1. No. 1. P. 43.
  6. 6. Tamburini F., Licata I. // Particles. 2024. V. 7. No. 3. P. 576.
  7. 7. Yang X., Liu Y., Liu W. et al. // Trends Biotechnol. 2016. V. 34. No. 10. P. 810.
  8. 8. Khan S., Acharyya A., Inokawa H. et al. // Photonics. 2023. V. 10. No. 7. P. 800.
  9. 9. Tzydynzhapov G., Gusikhin P., Muravev V. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 632.
  10. 10. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M. et al. // Appl. Optics. 2021. V. 60. No. 33. P. 10448.
  11. 11. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 655.
  12. 12. Jelali M., Papadopoulos K. // Processes. 2024. V. 12. No. 4. P. 712.
  13. 13. Nsengiyumva W., Zhong Sh., Zheng L. et al. // IEEE Trans. Instrum. Meas. 2023. V. 72. P. 1.
  14. 14. Torkaman P., Yadav G.S., Wang P.-Ch. et al. // IEEE Access. 2022. V. 10. P. 65572.
  15. 15. Ghavidel A., Myllymaki S., Kokkonen M. et al. // Engin. Reports. 2022. V. 4. No. 3. Art. No. e12474.
  16. 16. Moon S.R., Kim E.S., Sung M. et al. // J. Lightwave Technol. 2022. V. 40. No. 2. P. 499.
  17. 17. Lyu Y., Kyosti P., Fan W. // China Commun. 2023. V. 20. No. 6. P. 26.
  18. 18. Хисамеева А.Р., Щепетильников А.В., Федотова Я.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 2. С. 172
  19. 19. Koenig S., Lopez-Diaz D., Antes J. et al. // Nature Photon. 2013. V. 7. No. 12. P. 977.
  20. 20. Muravev V.M., Gusikhin P.A., Andreev I.V., Kukushkin I.V. // Phys. Rev. Lett. 2015. V. 114. No. 10. Art. No. 106805.
  21. 21. Muravev V.M., Gusikhin P.A., Zarezin A.M. et al. // Phys. Rev. B. 2019. V. 99. No. 24. Art. No. 241406(R).
  22. 22. Muravev V.M., Kukushkin I.V. //Appl. Phys. Lett. 2012. V. 100. No. 8. Art. No. 082102.
  23. 23. Муравьев В.М., Соловьев В.В., Фортунатов А.А. и др. // Письма в ЖЭТФ. 2016. Т. 103. № 12. С. 891
  24. 24. Shchepetilnikov A.V., Kaysin B.D., Gusikhin P.A. et al. // Opt. Quantum Electron. 2019. V. 51. No. 12. P. 1.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library