RAS PhysicsИзвестия Российской академии наук. Серия физическая Bulletin of the Russian Academy of Sciences: Physics

  • ISSN (Print) 0367-6765
  • ISSN (Online) 3034-6460

Gold nanoparticles as SERS-substrates for MTT assay

PII
S0367676525020156-1
DOI
10.31857/S0367676525020156
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 89 / Issue number 2
Pages
237-246
Abstract
Several variants of gold nanoparticles were proposed for the detection of formazan formed because of enzymatic reduction of the MTT reagent by E. coli enzymes. It is shown that gold nanostars coated with a micellar stabilizer are the most promising SERS-substrate for the detection of formazan in biological mixtures, reducing the required titer of bacteria by at least an order of magnitude.
Keywords
гигантское комбинационное рассеяние наночастицы МТТ-тест бактерия
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Cook M.A., Wright G.D. // Sci. Transl. Med. 2020. V. 14. No. 657. Art. No. eabo7793.
  2. 2. Prospero E., Barbadoro P., Marigliano A. et al. // Epidemiol. Infect. 2011. V. 139. No. 9. P. 1326.
  3. 3. Davies J., Davies D. // Microbiol. Mol. Biol. Rev. 2010. V. 74. No. 3. P. 417.
  4. 4. Walsh T.R., Gales A.C., Laxminarayan R. et al. // PLoS Med. 2023. V. 20. No. 7. Art. No. e1004264.
  5. 5. Kim C., Holm M., Frost I. et al. // BMJ Glob Health. 2023. V. 8. No. 7. Art. No. e011341. https://apo.org.au/node/63983.
  6. 6. Zasowski E.J., Bassetti M., Blasi F. et al. // Chest. 2020. V. 158. No. 3. P. 929.
  7. 7. Autore G., Neglia C., Di Costanzo M. et al. // Children. 2022. V. 9. No. 2. P. 128.
  8. 8. Garnacho-Montero J., Ortiz-Leyba C., HerreraMelero I. et al. // J. Antimicrob. Chemother. 2008. V. 61. No. 2. P. 436.
  9. 9. Syal K., Mo M., Yu H. et al. // Theranostics. 2017. V. 7. No. 7. P. 1795.
  10. 10. Puttaswamy S., Gupta S.K., Regunath H. et al. // Arch. Clin. Microbiol. 2018. V. 9. No. 3. P. 83.
  11. 11. Steingart K.R., Sohn H., Schiller I. et al. // Cochrane Database Syst. Rev. 2014. V. 2014. No. 1. Art. No. CD009593.
  12. 12. Burckhardt I., Zimmermann S. // Front. Microbiol. 2018. V. 9. P. 1744.
  13. 13. Khan Z.A., Siddiqui M.F., Park S. // Diagnostics. 2019. V. 9. No. 2. P. 49.
  14. 14. Berridge M.V., Herst P.M., Tan A.S. // Biotechnol. Annu. Rev. 2005. V. 11. P. 127.
  15. 15. Kumar P., Nagarajan A., Uchil P.D. // Cold Spring Harb Protoc. 2018. V. 2018. No. 6. Art. No. pdbprot095505.
  16. 16. Grela E., Kozlowska J., Grabowiecka A. // Acta Histochem. 2018. V. 120. No. 4. P. 303.
  17. 17. Shi L., Ge H.-M., Tan S.-H. et al. // Eur. J. Med. Chem. 2007. V. 42. No. 4. P. 558.
  18. 18. Nuryastuti T., van der Mei H.C., Busscher H.J. et al. // Appl. Environ. Microbiol. 2009. V. 75. No. 21. P. 6850.
  19. 19. Schillaci D., Arizza V., Dayton T. et al. // Lett. Appl. Microbiol. 2008. V. 47. No. 5. P. 433.
  20. 20. Grela E., Kozlowska J., Grabowiecka A. // Acta Histochem. 2018. V. 120. No. 4. P. 303.
  21. 21. https://www.edmundoptics.com/knowledgecenter/application-notes/lasers/basic-principles-oframan-scattering-and-spectroscopy/.
  22. 22. Das R.S., Agrawal Y.K. // Vibr. Spectrosc. 2011. V. 57. No. 2. P. 163.
  23. 23. Harvey S.D., Vucelick M.E., Lee R.N. et al. // Forensic. Sci. Int. 2002. V. 125. No. 1. P. 12.
  24. 24. Hodges C.M., Akhavan J. // Spectrochim. Acta A. 1990. V. 46. No. 2. P. 303.
  25. 25. Ianoul A., Coleman T., Asher S.A. // Analyt. Chem. 2002. V. 74. No. 6. P. 1458.
  26. 26. Yang D., Ying Y. // Appl. Spectrosc. Rev. 2011. V. 46. No. 7. P. 539.
  27. 27. Depciuch J., Kaznowska E., Zawlik I. et al. // Appl. Spectrosc. 2016. V. 70. No. 2. P. 251.
  28. 28. Devitt G., Howard K., Mudher A. et al. // ACS Chem. Neurosci. 2018. V. 9. No. 3. P. 404.
  29. 29. MacRitchie N., Grassia G., Noonan J. et al. // Heart. 2018. V. 104. No. 6. P. 460.
  30. 30. https://www.promega.com.br/resources/pubhub/isyour-mtt-assay-really-the-best-choice.
  31. 31. Hering K., Cialla D., Ackermann K. et al. // Analyt. Bioanalyt. Chem. 2008. V. 390. P. 113.
  32. 32. Mao Z., Liu Z., Chen L. et al. // Analyt. Chem. 2013. V. 85. No. 15. P. 7361.
  33. 33. Robert B. // Photosynth. Res. 2009. V. 101. P. 147.
  34. 34. Gerlier D., Thomasset N. // J. Immunol. Meth. 1986. V. 94. No. 1–2. P. 57.
  35. 35. Eilers P.H.C. // Analyt. Chem. 2003. V. 75. No. 14. P. 3631.
  36. 36. Baek S.-J., Park A., Ahn Y.-J. et al. // Analyst. 2015. V. 140. No. 1. P. 250.
  37. 37. Грибанев Д.А., Рудакова Е.В., Завьялова Е.Г. // Изв. РАН. Сер. физ. 2023. Т. 87. № 2. С. 194
  38. 38. Жданов Г.А., Грибанев Д.А., Гамбарян А.С. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 4. С. 531
  39. 39. Мушенков В.А., Лукьянов Д.А., Мещерякова Н.Ф. и др. // Молек. биол. 2024. Т. 58. № 6. С. 1031.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library