- PII
- S0367676525020184-1
- DOI
- 10.31857/S0367676525020184
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 89 / Issue number 2
- Pages
- 265-273
- Abstract
- The temporal evolution of the polarized emission spectra of spinor exciton-polariton condensates in double tunnel-coupled potential traps in a high-Q GaAs/AlAs microcavity at 2 K under resonant laser pumping with picosecond pulses has been studied in the time range up to 1.5 ns. An estimate of the spin relaxation time of the condensate τS ∼ 10 ns is obtained. The influence of the symmetry of the trap potential on the energy spectrum of the polariton modes and on the polarization dynamics of the spinor condensate in the tunnel-coupled potential traps is discussed.
- Keywords
- микрорезонатор экситон-поляритоны спинорный поляритонный конденсат бозонный джозефсоновский переход время-разрешенная спектроскопия
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 16
References
- 1. Weisbuch C., Nishioka M., Ishikawa A., Arakawa Y. // Phys. Rev. Lett. 1992. V. 69. P. 3314.
- 2. Deveaud B. The physics of semiconductor microcavities. Weinheim: Wiley-VCH, 2007.
- 3. Kavokin A.V., Baumberg J.J., Malpuech G., Laussy F.P. Microcavities. Oxford: Oxford University Press, 2007.
- 4. Sanvitto D., Timofeev V. Exciton polaritons in microcavities. Berlin: Springer-Verlag, 2012.
- 5. Zasedatelev A.V., Baranikov A.V., Urbonas D. et al. // Nature Photon. 2019. V. 13. P. 378.
- 6. Максимов А.А., Филатов Е.В., Тартаковский И.И. // Изв. РАН. Сер. физ. 2021. Т. 85. № 2. С. 241
- 7. Demenev A.A., Kulakovskii V.D., Schneider C. et al. // Appl. Phys. Lett. 2016. V. 109. P. 171106.
- 8. Деменев А.А., Ковальчук А.В., Полушкин Е.А., Шаповал С.Ю. // Изв. РАН. Сер. физ. 2021. Т. 85. № 2. С. 212
- 9. Kavokin A., Liew T.C.H., Schneider C. et al. // Nature Rev. Rhys. 2022. V. 4. P. 435.
- 10. Cataliotti F.S., Burger S., Fort C. et al. // Science. 2001. V. 293. P. 843.
- 11. Gati R., Albiez M., Folling J. et al. // Appl. Phys. B. 2006. V. 82. P. 207.
- 12. Levy S., Lahoud E., Shomroni I., Steinhauer J. // Nature. 2007. V. 449. P. 579.
- 13. Albiez M., Gati R., Folling J. et al. // Phys. Rev. Lett. 2005. V. 95. Art. No. 010402.
- 14. Shelykh I.A., Solnyshkov D.D., Pavlovic G., Malpuech G. // Phys. Rev. B. 2008. V. 78. Art. No. 041302(R).
- 15. Деменев А.А., Кулаковский В.Д., Терешко С.Н., Гиппиус Н.А. // ЖЭТФ. 2022. Т. 162. № 4. С. 471
- 16. Wouters M. // Phys. Rev. B. 2008. V. 77. Art. No. 121302(R).
- 17. Sarchi D., Carusotto I., Wouters M., Savona V. // Phys. Rev. B. 2008. V. 77. Art. No. 125324.
- 18. Read D., Rubo Yuri G., Kavokin A.V. // Phys. Rev. B. 2010. V. 81. Art. No. 235315.
- 19. Lagoudakis K.G., Pietka B., Wouters M. et al. / Phys. Rev. Lett. 2010. V. 105. P. 120403.
- 20. Abbarchi M., Amo A., Sala V. et al. // Nature Phys. 2013. V. 9. P. 275.
- 21. Lebedev M.E., Dolinina D.A., Hong KB. et al. // Sci. Reports. 2017. V. 7. P. 9515.
- 22. Abdalla S., Zou B., Zhang Y. // Opt. Express. 2020. V. 28. P. 9136.
- 23. Bello F., Eastham P.R. // Phys. Rev. B. 2017. V. 95. Art. No. 245312.
- 24. Zhang C., Jin G. // Phys. Rev. B. 2011. V. 84. Art. No. 115324.
- 25. Klopotowski L., Martin M.D., Amo A. et al. // Solid State Commun. 2006. V. 139. P. 511.