RAS PhysicsИзвестия Российской академии наук. Серия физическая Bulletin of the Russian Academy of Sciences: Physics

  • ISSN (Print) 0367-6765
  • ISSN (Online) 3034-6460

Self-oscillatory and chaotic states of a polariton system in a size-quantized cavity micropillar

PII
S0367676525020192-1
DOI
10.31857/S0367676525020192
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 89 / Issue number 2
Pages
274-279
Abstract
Theoretical study is performed of a quasi-two-dimensional exciton-polariton system localized in a circular microcavity mesa under the conditions of resonant photoexcitation. It is predicted that in a case when several size-quantized sublevels are excited, a series of transitions occurs from stationary to self-oscillatory and further to chaotic states. The transition from stationary states to oscillations is accompanied by a lowering of the rotational symmetry down to a discrete one, whereas in the chaotic region the spatial symmetry disappears completely. In a spinor system, analogous phenomena result in polarization chaos.
Keywords
экситонные поляритоны бозе-эйнштейновский конденсат автоколебания динамический хаос
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Weisbuch C., Nishioka M., Ishikawa A., Arakawa Y. // Phys. Rev. Lett. 1992. V. 69. No. 23. P. 3314
  2. 2. Kavokin A.V., Baumberg J.J., Malpuech G., Laussy P. Microcavities. NY.: Oxford University Press, 2017.
  3. 3. Yamamoto Y., Tassone T., Cao H. Semiconductor cavity quantum electrodynamics. Berlin: Springer, 2000.
  4. 4. Елесин В.Ф., Копаев Ю.В. // ЖЭТФ. 1973. Т. 63. № 4. С. 1447
  5. 5. Келдыш Л.В. // УФН. 2017. Т. 187. № 11. 1273; Keldysh L.V. // Phys. Usp. 2017. V. 60. No. 11. P. 1180.
  6. 6. Baas A., Karr J.Ph., Eleuch H., Giacobino E. // Phys. Rev. A. 2004. V. 69. No. 2. Art. No. 023809.
  7. 7. Гаврилов С.С. // УФН. 2020. Т. 190. № 2. С. 137
  8. 8. Gavrilov S.S. // Phys. Rev. B. 2014. V. 90. No. 12. Art. No. 205303.
  9. 9. Leblanc C., Malpuech G., Solnyshkov D.D. // Phys. Rev. B. 2020. V. 101. No. 11. Art. No. 115418.
  10. 10. Sarchi D., Carusotto I., Wouters M., Savona V. // Phys. Rev. B. 2007. V. 77. No. 12. Art. No. 125324.
  11. 11. Solnyshkov D.D., Johne R., Shelykh I.A., Malpuech G. // Phys. Rev. B. 2009. V. 8. No. 23. Art. No. 235303.
  12. 12. Gavrilov S.S. // Phys. Rev. B. 2021. V. 103. No 18. Art. No. 184304.
  13. 13. Gavrilov S.S. // Phys. Rev. B. 2016. V. 94. No. 19. Art. No. 195310.
  14. 14. Gavrilov S.S. // Phys. Rev. B. 2022. V. 106. No. 4. Art. No. 045304.
  15. 15. Гаврилов С.С., Ипатов Н.Н., Кулаковский В.Д. // Письма в ЖЭТФ. 2023. Т. 118. № 9. С. 649
  16. 16. Gavrilov S.S., Sekretenko A.V., Novikov S.I. et al. // Appl. Phys. Lett. 2013. V. 102. No. 1. Art. No. 011104.
  17. 17. Максимов А.А., Филатов Е.В., Тартаковский И.И. // Изв. РАН. Сер. физ. 2021. T. 85. № 2. С. 241
  18. 18. Максимов А.А., Филатов Е.В., Тартаковский И.И. // Изв. РАН. Сер. физ. 2022. T. 86. № 4. C. 494
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library