RAS PhysicsИзвестия Российской академии наук. Серия физическая Bulletin of the Russian Academy of Sciences: Physics

  • ISSN (Print) 0367-6765
  • ISSN (Online) 3034-6460

Differential sensitivity of the TAIGA-IACT facility in stereo observation mode

PII
S30346460S0367676525060199-1
DOI
10.7868/S3034646025060199
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 80 / Issue number 6
Pages
932-936
Abstract
We evaluated the differential sensitivity of the 5 atmospheric Cherenkov telescopes under construction as part of the TAIGA astrophysical complex. The procedure of simulating of detected gamma-rays with energies from 2 to 200 TeV in the stereo observing mode is described, as well as the gamma-hadron separation technique used to determine the differential sensitivity of the facility.
Keywords
широкие атмосферные ливни чувствительность гамма-астрономия IACT
Date of publication
01.06.2025
Year of publication
2025
Number of purchasers
0
Views
44

References

  1. 1. Kuzmichev L.A., Astapov I.I., Bezyazeekov P.A. et al. (TAIGA Collaboration) // Phys. Atom. Nucl. 2018. V. 81. No. 4. P. 497.
  2. 2. Budnev N.M., Astapov I.I., Bezyazeekov P.A. et al. (TAIGA Collaboration) // JINST. 2020. V. 15. No. 9. Art. No. C09031.
  3. 3. Lubsandorzhiev N.B., Astapov I.I., Bezyazeekov P.A. et al. (TAIGA Collaboration) // PoS. ICRC2017. P. 757.
  4. 4. Sveshnikova L., Astapov I., Bezyazykov P. et al. (TAIGA Collaboration) // Phys. Atom. Nucl. 2023. V. 86. P. 2096.
  5. 5. Свешникова Л.Г., Волчугов П.А., Постников Е.Б. и др. (коллаборация TAIGA) // Изв. РАН. Сер. физ. 2023. Т. 87. №7. С. 966@@ Sveshnikova L.G., Volchugov P.A., Postnikov E.B. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 7. P. 907.
  6. 6. Volchugov P.A., Astapov I.I., Bezyazykov P.A. et al. (TAIGA Collaboration) // Instrum. Exp. Tech. 2024. V. 67. No. 1. P. 143.
  7. 7. https://doi.org/10.5445/IR/270043064.
  8. 8. Fesefeldt H.S. // PITHA-85-02. 1985. P. 372.
  9. 9. Ostapchenko S. // Phys. Rev. D. 2011. V. 83. No. 1. Art. No. 014018.
  10. 10. An Q., Asfandiyarov R., Azzarello P. et al. (DAMPE Collaboration) // Sci. Advances. 2019. V. 5. No. 9. Art. No. eaax3793.
  11. 11. Abeysekara A.U., Albert A., Alfaro R. et al. (HAWC Collaboration) // Astrophys. J. 2019. V. 881. No. 2. P. 134.
  12. 12. Grinyuk A., Postnikov E., Sveshnikova L. et al. (TAIGA Collaboration) // Phys. Atom. Nucl. 2020. V. 83. P. 262.
  13. 13. Hillas A.M. // Proc. 19nd ICRC. V. 3. (La Jolla, 1985). P. 445
  14. 14. Krawczynski H., Carter-Lewis D.A., Duke C. et al. // Astropart. Phys. 2006. V. 25. P. 380.
  15. 15. https://github.com/Microsoft/LightGBM.
  16. 16. Cao Zhen, Aharonian F., An Q. et al. (LHASSO Collaboration) // Astrophys. J. Suppl. Ser. 2024. V. 271. No. 1. P. 25.
  17. 17. http://hpc.icc.ru.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library