RAS PhysicsИзвестия Российской академии наук. Серия физическая Bulletin of the Russian Academy of Sciences: Physics

  • ISSN (Print) 0367-6765
  • ISSN (Online) 3034-6460

Light component of cosmic rays' estimation in the range 200–10000 TeV by hybrid method

PII
S30346460S0367676525060217-1
DOI
10.7868/S3034646025060217
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 80 / Issue number 6
Pages
942-946
Abstract
We presented new results on measuring the spectrum of the light component (protons + helium) of cosmic rays in the classical knee region in the primary cosmic rays' spectrum at an energy of , obtained from hybrid data of the TAIGA experiment. In hybrid method Cherenkov light created in atmosphere by extensive air showers is recorded simultaneously by two (IACT + HiSCORE) installations. At the same time, the separation of showers from the light component is carried out for the first time according to the image parameters recorded by the IACT atmospheric image telescope. The developed approach to the separation of the light component is based on and confirmed by Monte Carlo calculations. In the obtained spectrum of the light component in the energy range 200–20000 TeV, a pronounced feature is observed at an energy of about 3 PeV.
Keywords
широкие атмосферные ливни первичные космические лучи химический состав черенковский телескоп
Date of publication
01.06.2025
Year of publication
2025
Number of purchasers
0
Views
47

References

  1. 1. Kuzmichev L.A., Astapov I.I., Beyyazvekov P.A. et al. // Phys. Atom. Nucl. 2018. V. 81. No. 4. P. 497.
  2. 2. Prosin V.V., Astapov L.A., Beyyazvekov I.I. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 7. P. 1043.
  3. 3. Blank M., Tluczykont M., Awad A. (TAIGA Collaboration) // Proc. Sci. Sissa Medialab. 2021. P. 395.
  4. 4. Elshoukrofiy A.Sh.M., Okuneva E., Sveshnikova L.G. (TAIGA Collaboration) // Proc. Sci. Sissa Medialab. 2023. P. 444.
  5. 5. Свешникова Л.Г., Волчугов П.А., Постников Е.Б. и др. // Изв. РАН Сер. физ. 2023. Т. 87. № 7. С. 966@@ Sveshnikova L.G., Volchugov P.A., Postnikov E.B. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 7. P. 904.
  6. 6. Grinyuk A., Postnikov E., Sveshnikova L.G. et al. // Phys. Atom. Nucl. 2020. V. 83. No. 2. P. 262.
  7. 7. Heck D., Knapp J., Capdevielle J.N. et al. // Tech. Rep. FZKA-6019. 1998.
  8. 8. Ostapchenko S. // Phys. Rev. D. 2011. V. 83. No. 1. Art. No. 014018.
  9. 9. Volchugov P.A., Astapov I.I., Beyyazvekov P.A. et al. (TAIGA Collaboration) // Instrum. Exp. Tech. 2024. V. 67. No. 1. P. 143.
  10. 10. Cao Z., Aharonian F. (LHAASO Collaboration) // Phys. Rev. Lett. 2024. V. 13. Art. No. 131002.
  11. 11. Parenti A. et al. (DAMPE Collaboration) // Int. J. Mod. Phys. Conf. Ser. 2023. V. 51. Art. No. 2361001.
  12. 12. Podorozhny D., Grebenyuk V., Karmanov D. et al. (NUCLEON Collaboration) // Adv. Space Res. 2022. V. 70. No. 5. P. 1529.
  13. 13. Chilingarian A., Gharagyogyan G., Howsepyan G. et al. // Astropart. Phys. 2007. V. 28. P. 58.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library