RAS PhysicsИзвестия Российской академии наук. Серия физическая Bulletin of the Russian Academy of Sciences: Physics

  • ISSN (Print) 0367-6765
  • ISSN (Online) 3034-6460

Dynamics of spinor exciton-polariton condensates in double potential traps in a GaAs/AlAs microcavity under resonant picosecond excitation

PII
S0367676525020184-1
DOI
10.31857/S0367676525020184
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 89 / Issue number 2
Pages
265-273
Abstract
The temporal evolution of the polarized emission spectra of spinor exciton-polariton condensates in double tunnel-coupled potential traps in a high-Q GaAs/AlAs microcavity at 2 K under resonant laser pumping with picosecond pulses has been studied in the time range up to 1.5 ns. An estimate of the spin relaxation time of the condensate τS ∼ 10 ns is obtained. The influence of the symmetry of the trap potential on the energy spectrum of the polariton modes and on the polarization dynamics of the spinor condensate in the tunnel-coupled potential traps is discussed.
Keywords
микрорезонатор экситон-поляритоны спинорный поляритонный конденсат бозонный джозефсоновский переход время-разрешенная спектроскопия
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Weisbuch C., Nishioka M., Ishikawa A., Arakawa Y. // Phys. Rev. Lett. 1992. V. 69. P. 3314.
  2. 2. Deveaud B. The physics of semiconductor microcavities. Weinheim: Wiley-VCH, 2007.
  3. 3. Kavokin A.V., Baumberg J.J., Malpuech G., Laussy F.P. Microcavities. Oxford: Oxford University Press, 2007.
  4. 4. Sanvitto D., Timofeev V. Exciton polaritons in microcavities. Berlin: Springer-Verlag, 2012.
  5. 5. Zasedatelev A.V., Baranikov A.V., Urbonas D. et al. // Nature Photon. 2019. V. 13. P. 378.
  6. 6. Максимов А.А., Филатов Е.В., Тартаковский И.И. // Изв. РАН. Сер. физ. 2021. Т. 85. № 2. С. 241
  7. 7. Demenev A.A., Kulakovskii V.D., Schneider C. et al. // Appl. Phys. Lett. 2016. V. 109. P. 171106.
  8. 8. Деменев А.А., Ковальчук А.В., Полушкин Е.А., Шаповал С.Ю. // Изв. РАН. Сер. физ. 2021. Т. 85. № 2. С. 212
  9. 9. Kavokin A., Liew T.C.H., Schneider C. et al. // Nature Rev. Rhys. 2022. V. 4. P. 435.
  10. 10. Cataliotti F.S., Burger S., Fort C. et al. // Science. 2001. V. 293. P. 843.
  11. 11. Gati R., Albiez M., Folling J. et al. // Appl. Phys. B. 2006. V. 82. P. 207.
  12. 12. Levy S., Lahoud E., Shomroni I., Steinhauer J. // Nature. 2007. V. 449. P. 579.
  13. 13. Albiez M., Gati R., Folling J. et al. // Phys. Rev. Lett. 2005. V. 95. Art. No. 010402.
  14. 14. Shelykh I.A., Solnyshkov D.D., Pavlovic G., Malpuech G. // Phys. Rev. B. 2008. V. 78. Art. No. 041302(R).
  15. 15. Деменев А.А., Кулаковский В.Д., Терешко С.Н., Гиппиус Н.А. // ЖЭТФ. 2022. Т. 162. № 4. С. 471
  16. 16. Wouters M. // Phys. Rev. B. 2008. V. 77. Art. No. 121302(R).
  17. 17. Sarchi D., Carusotto I., Wouters M., Savona V. // Phys. Rev. B. 2008. V. 77. Art. No. 125324.
  18. 18. Read D., Rubo Yuri G., Kavokin A.V. // Phys. Rev. B. 2010. V. 81. Art. No. 235315.
  19. 19. Lagoudakis K.G., Pietka B., Wouters M. et al. / Phys. Rev. Lett. 2010. V. 105. P. 120403.
  20. 20. Abbarchi M., Amo A., Sala V. et al. // Nature Phys. 2013. V. 9. P. 275.
  21. 21. Lebedev M.E., Dolinina D.A., Hong KB. et al. // Sci. Reports. 2017. V. 7. P. 9515.
  22. 22. Abdalla S., Zou B., Zhang Y. // Opt. Express. 2020. V. 28. P. 9136.
  23. 23. Bello F., Eastham P.R. // Phys. Rev. B. 2017. V. 95. Art. No. 245312.
  24. 24. Zhang C., Jin G. // Phys. Rev. B. 2011. V. 84. Art. No. 115324.
  25. 25. Klopotowski L., Martin M.D., Amo A. et al. // Solid State Commun. 2006. V. 139. P. 511.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library