RAS PhysicsИзвестия Российской академии наук. Серия физическая Bulletin of the Russian Academy of Sciences: Physics

  • ISSN (Print) 0367-6765
  • ISSN (Online) 3034-6460

Spectrum and composition of primary cosmic rays by the data of the TAIGA-HiSCORE array

PII
S30346460S0367676525060236-1
DOI
10.7868/S3034646025060236
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 80 / Issue number 6
Pages
950-954
Abstract
The results of the operation of the TAIGA-HiSCORE array after increasing the number of stations to 114 and directing all stations to the zenith are presented. The conversion from the measured Cherenkov light flux of the extensive air shower (EAS) to the primary cosmic particle energy is refined. The ⟨ln A⟩ parameter, recalculated from the maximum depth, characterizing the average composition of primary cosmic radiation, is compared with the results obtained at our Tunka-133 installation, as well as with the results of the LHAASO and AUGER experiments.
Keywords
широкие атмосферные ливни энергетический спектр массовый состав
Date of publication
01.06.2025
Year of publication
2025
Number of purchasers
0
Views
42

References

  1. 1. Prosin V., Astapov I., Bezyazeekov P. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 7. P. 1043.
  2. 2. Budnev N.M., Chiavassa A., Gress O.A. et al. // Astropart. Phys. 2020. V. 117. Art. No. 102406.
  3. 3. Просин В.В., Астапов И.И., Безъязыков П.А. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 4. С. 525@@ Prosin V.V., Astapov I.I., Bezyazeekov P.A. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 395.
  4. 4. Korosteleva E.E. Prosin V.V., Kuzmichev L.A., and Navarra G. // Nucl. Phys. B. Proc. Suppl. 2007. V. 165. P. 74.
  5. 5. Панов А.Д., Адамс Д.Х. мл., Ан Х.С. и др. // Изв. РАН. Сер. физ. 2009. Т. 73. С. 602@@ Panov A.D., Adams J.H. Jr., Ahn H.S. et al. // Bull. Russ. Acad. Sci. Phys. 2009. V. 73. P. 564.
  6. 6. Турундаевский А.Н., Васильев О.А., Карманов Д.Е. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 4. С. 478@@ Turundaevskiy A.N., Vasiliev O.A., Karmanov D.E. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 353.
  7. 7. Alfaro R., Alvarez C., Alvarez J. D. et al. (HAWC Collaboration) // Phys. Rev. D. Part. 2017. V. 96. Art. No. 122001.
  8. 8. Cao Z., Aharonian F., Axikegu et al. (LHAASO Collaboration) // Phys. Rev. Lett. 2024. V. 132. Art. No. 131002.
  9. 9. Prosin V., Astapov I., Bezyazeekov P. et al. // Phys. Atom. Nucl. 2021. V. 84. No. 9. P. 1653.
  10. 10. Yushkov Alexey for the Pierre Auger Collaboration // Proc. 36th ICRC2019. (Madison, 2019) Art. No. 482
  11. 11. Abbasi R.U., Abe M., Abu-Zayyad T. et al. (Telescope Array Collaboration) // Astrophys. J. 2018 V. 858 P. 76
  12. 12. Ostapchenko S., Bleicher M. // Phys. Rev. D. 2016. V. 93. Art. No. 034015.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library