RAS PhysicsИзвестия Российской академии наук. Серия физическая Bulletin of the Russian Academy of Sciences: Physics

  • ISSN (Print) 0367-6765
  • ISSN (Online) 3034-6460

Properties of GRBs high-energy gamma-emission according to Fermi/LAT, CORONAS-F/ABC-F and PHOTON/NATALYA-2M data

PII
S30346460S0367676525060266-1
DOI
10.7868/S3034646025060266
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 80 / Issue number 6
Pages
966-971
Abstract
The AVS-F catalogue contains several tens of GRBs, the one of NATALYA-2M consists of 6 objects (maximum photon energy ∼150 and ∼60 MeV, respectively). The Fermi/LAT catalogue contains more than 200 bursts in the range E > 100 MeV. Different behavior of the prompt emission time profiles is observed in the high and low energy ranges during some events with the presence of a high-energy spectral component. When using the parameter Rt (the ratio of the arrival time of photon with maximum energy to the duration of the burst) that does not require taking into account cosmological duration dilation, the following groups are distinguished among long bursts: (1) for ∼25% of GRBs the duration of high-energy emission is shorter than that of low-energy range; (2) for the remaining ∼75% the opposite situation is observed, but the maximum energy γ is detected during the low-energy prompt emission (2a) or after its completion (2b). The characteristics of GRBs with γ in the sub-TeV region are similar to types 2a and 2b, there is no significant correlation between their maximum energy and redshift.
Keywords
гамма-всплески GRB050525 GRB090926A GRB091120 GRB160509 GRB141222A GRB131018B космологическое растяжение длительности высокоэнергетическое излучение гамма-всплесков
Date of publication
01.06.2025
Year of publication
2025
Number of purchasers
0
Views
42

References

  1. 1. Paciesas W.S., Meegan C.A., Pendleton G.N. et al. // Astrophys. J. Suppl. 1999. V. 122. P. 465.
  2. 2. Hurley K., Briggs M.S., Kippen R.M. et al. // Astrophys. J. 2011. V. 196. P. 1.
  3. 3. Dingus B.L., Catelli J.R., and Schneid E.J. // AIP Conf. Proc. 1998. V. 428. P. 349.
  4. 4. Schneid E.J., Bertsch D.L., and Fichtel C.E. // AIP Conf. Proc. 1991. V. 265. P. 38.
  5. 5. Kaneko Y., González M., Preece R. et al. // Astrophys. J. 2008. V. 677. P. 1168.
  6. 6. McArthur B.E., Endl M., Cochran W.D. et al. // ArXiv: astro-ph/0401285. 2004.
  7. 7. Hurley K., Boer M., Niel M. et al. // BAAS. 1994. V. 26. P. 881.
  8. 8. Atkins R., Benbow W., Berley D. et al. // Astrophys. J. 2000. V. 533. P. L119.
  9. 9. Band D., Matteson J., Ford L. et al. // Astrophys. J. 1993. V. 413. P. 281.
  10. 10. https://gammaray.nsstc.nasa.gov/batse/grb/catalog/current/index.html.
  11. 11. González M.M., Dingus B.L., Kaneko Y. et al. // Nature. 2003. V. 424. P. 749.
  12. 12. Arkhangelskaja I.V., and Miroshnichenko L.I. // Proc. 30th ICRC. V. 3. (Merida, 2007). P. 1143.
  13. 13. Архангельская И.В., Архангельский А.И., Афонина И.В. и др. // Изв. РАН. Сер. физ. 2002. Т. 66. №11. С. 1666.
  14. 14. Кузнецов С.Н., Богомолов А.В., Гордеев Ю.П. и др. // Изв. РАН. Сер. физ. 1995. Т. 59. №4. С. 2.
  15. 15. Панков В., Прохин В., Хавенсон Н. // Астрон. вестн. 2006. T. 40. №4. C. 344.
  16. 16. Кузнецов В.Д. // Астрон. вестн. 2005. Т. 39. №6. С. 485.
  17. 17. Архангельская И.В., Архангельский А.И., Котов Ю.Д. и др. // Косм. иссл. 2007. Т. 45. №3. С. 278@@ Arkhangelskaya I.V., Arkhangelskii A.I., Kotov Yu.D. et al. // Cosmic Res. 2007. V. 45. No. 3. P. 261.
  18. 18. Arkhangelskaja I.V., Arkhangelskiy A.I., Glyanenko A.S. et al. // Proc. MG11 (Berlin, 2006). P. 1968.
  19. 19. Архангельская И.В., Зенин А.А., Кирин Д.Ю. и др. // Изв. РАН. Сер. физ. 2013. Т. 77. №11. С. 1600.
  20. 20. Arkhangelskaja I.V. // J. Phys. Conf. Ser. 2016. V. 675. No. 3. Art. No. 032022.
  21. 21. Connaughton V., Briggs M.S., Goldstein A. et al. // Astrophys. J. Suppl. 2015. V. 216. Art. No. 32.
  22. 22. Meegan C., Lichti G., Bhat P.N. et al. // Astrophys. J. 2009. V. 702. P. 791.
  23. 23. Poolakkil S., Preece R., Fletcher C. et al. // Astrophys. J. 2021. V. 913. Art. No. 60.
  24. 24. Atwood W., Abdo A., Ackermann M. et al. // Astrophys. J. 2009. V. 697. P. 1071.
  25. 25. https://www.ssdc.asi.it/grblat.
  26. 26. https://heasarc.gsfc.nasa.gov/db-perl/W3Browse/w3table.pl?tablehead=name%3Dfermilgrb&Action=More+Options.
  27. 27. Ajello M., Arimoto M., Axelsson M. et al. // Astrophys. J. 2019. V. 898. Art. No. 52.
  28. 28. Hinds K.R., Oates S.R., Nicholl M. et al. // Month. Not. Royal Astron. Soc. 2032. V. 526. P. 34000.
  29. 29. Архангельская И.В. // Изв. РАН. Сер. физ. 2021. Т. 85. №4. С. 605@@ Arkhangelskaja I.V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 461.
  30. 30. Abdalla H., Adam R., Aharonian F. et al. // Nature. 2019. V. 575. P. 464.
  31. 31. The LHAASO Collaboration // Sci. Advances. 2023. V. 9. Art. No. eadj2778.
  32. 32. Котов Ю.Д., Юров В.Н., Лупарь Е.Е. и др. // Астрон. вестн. 2011. Т. 45. №2. С. 83@@ Kotov Yu., Yurov V., Lupar E. et al. // Solar Syst. Res. 2011. V. 45. No. 2. P. 97.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library