RAS PhysicsИзвестия Российской академии наук. Серия физическая Bulletin of the Russian Academy of Sciences: Physics

  • ISSN (Print) 0367-6765
  • ISSN (Online) 3034-6460

The characteristics of Forbush decreases based on data from AMS-02 experiment and fluxes of solar cosmic rays on GOES-15 one

PII
S30346460S0367676525060299-1
DOI
10.7868/S3034646025060299
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 80 / Issue number 6
Pages
984-988
Abstract
An analysis of the dependence of the amplitudes of the 10 strongest preceded by Halo-type CMEs Forbush decreases in proton and helium nuclei fluxes according to AMS-02 data on the magnetic rigidity of particles showed that it is well approximated by a power function (as was shown in the PAMELA experiment) in the rigidity range from 1 to 10–12 GV. The index of this function is in the range from –0.38±0.02 to –0.68 ± 0.04 for protons and from –0.41± 0.03 to –0.79 ± 0.04 for helium nuclei. But in a wider range of rigidity values up to 20 GV, such approximation significance level is only 90–92% for protons and 90–96% for helium nuclei. Exponential functions providing 95–99% significance level both for protons and helium nuclei should be used over the entire range of rigidities. Comparison of time series for protons according to AMS-02 and GOES-15 data shows the possibility of observing SEP and SPE together with the background Forbush decreases.
Keywords
форбуш-эффект форбуш-понижения AMS-02 КВМ потоки протонов потоки ядер гелия космические лучи
Date of publication
01.06.2025
Year of publication
2025
Number of purchasers
0
Views
46

References

  1. 1. Дорман Л.И. Вариант галактических космических лучей. М: Московский университет, 1975. 207 с.
  2. 2. Chen F.F. Introduction to Plasma Physics and Controlled Fusion. Berlin: Springer, 2016. 497 p.
  3. 3. Nakagawa Y., Nozawa S., and Shinbori A. // Earth. Planets. Space. 2019. V. 71. Art. No. 24.
  4. 4. Мелкумян А.А., Белов А.В., Абунина М.А. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 5. С. 625@@ Melkumyan A.A., Belov A.V., Abunina M.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 5. P. 566.
  5. 5. Белов А.В., Белова Е.А., Шлык Н.С. и др. // Геомагн. и аэроном. 2024. № 64. С. 289.
  6. 6. https://tools.ssdc.asii.it/CosmicRays/ chargedCosmicRays.jsp?&&target=ALL& experiment=AMS-02.
  7. 7. Лагойда И.А. Характеристики форбуш понижений по данным эксперимента «ПАМЕЛА». Дисс. ... канд. физ.-мат. наук. М.: МИФИ, 2022.
  8. 8. Лагойда И.A., Воронов С.A., Михайлов В.В. // Физика ЭЧАД. 2019. Т. 50. № 6. С. 1077.
  9. 9. Wang S., Birdi V., Consolandi C., Claudio Corti et al. // Astrophys. J. 2023. V. 950. P. 23.
  10. 10. https://cdaw.gsfc.nasa.gov/CME_list/sepe.
  11. 11. ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/ SATELLITE_ENVIRONMENT/PARTICLES/ 2012.
  12. 12. https://sepserver.eu/index.php.
  13. 13. https://www.ngdc.noaa.gov/stp/space-weather/ interplanetary-data/solar-proton-events/SEP%20page%20code.html.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library